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Abstract 

The aim of the present study is to investigate whether 

wavelet based features of ECG signals during central 

sleep apnea (CSA) can act as surrogate of respiratory 

effort measured by respiratory inductance 

plethysmography (RIP). Therefore, RIP and ECG signals 

during 125 pre-scored CSA events and 10 seconds 

preceding the events were collected from 7 patients. 

Wavelet decompositions of ECG signals upto 10 levels 

were used as input to the support vector regression (SVR) 

model to recognize the drop in RIP signal amplitudes 

during CSA. Using 25-fold cross validation, an optimal 

showed that it correctly recognized 115 CSA events (92% 

detection accuracy) using a subset of selected 

combination of wavelet decomposition levels (level 9 and 

10; 0.12-0.24 Hz) of ECG. Results suggest superior 

performance of SVR using ECG as the surrogate in 

recognizing the fall of respiratory effort during CSA.  

 

1. Introduction 

Observation during central sleep apnea (CSA) reveals 

an absence of respiratory movements, which differentiate 

these apneas from obstructive sleep apnea (OSA). These 

observations can be confirmed by sleep studies in which 

abdominal and chest wall movement recordings are 

combined with airflow and oximetry. CSA is recognized 

when respiratory effort falls below 15% of pre-event peak 

to peak amplitude of the respiratory effort. The arousals 

are less frequent than in OSA because of the absence of 

any increased inspiratory effort as an arousal stimuli. 

During CSA the Pco2 gradually rises and when it reaches 

the apnoeic threshold, a period of hyperventilation then 

begins to lower the Pco2 again [1]. 

At present, the clinical technique for respiratory 

monitoring during sleep is the use of two inductance 

plethysmography measurements (rib-cage and 

abdominal), which can be used with reasonable 

agreement with those of the standard reference methods 

of measurement for respiratory effort-related arousals 

(RERA), central hypopnea–apnea, and Cheyne–Stokes 

respiration (CSR) associated with central sleep apnea 

CSR-CSA [2]. 

In this study, we use discrete wavelet transform of 

ECG signals to extract the respiratory related components 

and combine them using support vector regression .The 

aim of this study is to determine whether surrogate 

respiratory signal extracted from ECG signal surrounding 

CSA can correlate with respiratory signal measured by 

respiratory inductance plethysmography (RIP).  

 

2. Methods 

2.1.   Subjects and sleep studies 

In total, 7 sleep studies were used to develop and 

validate our classification algorithms. Sleep studies were 

collected from the database of Institute of breathing and 

sleep, Austin Hospital, Melbourne, Australia. Brief 

descriptions of the databases are as follows. The research 

protocol was approved by Austin Ethics in Human 

Research Committee (H2008/03252). The 

polysomnograms (PSG) of 7 sleep apnea patients [(mean 

±SD) age 51±5 yrs, body mass index (BMI) 30±4 kg/m2] 

were analysed by Pro-Fusion software version 3 

(Compumedics Pty Melbourne, Australia).  PSG study 

included electroencephalogram (channel C3-A2 and C4-

A1), left and right electrooculogram, leg movements, 

body positions, thoracic and abdominal wall expansion 

(by respiratory inductive plethysmography), oronasal 

airflow (by Nasal pressure), arterial oxygen saturation 

SaO2 (by pulse oximetry) and ECG (sampling 

frequency=250 Hz with a resolution of 16bits/sample). 

All subjects were free of any cardiac history. Diagnosis 

was based on clinical symptoms and polysomnographic 

(PSG) outcomes. Respiratory events were scored using 

criteria proposed by the AASM[3]. 125 pre-scored CSA 

events were selected from 7 patients respectively for the 

analysis. CSA was scored as the absence of oronasal 

airflow for >10 s in using the criteria that a reduction of 

more than 85% from peak to peak (mean positive to mean 

negative) amplitude of respiratory inductive 

plethysmography signals; the reduction must be in both 
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the thoracic and abdominal movement channels (which 

were recorded on separate channels for this study is 

associated with either an oxygen desaturation of  >3% or 

an arousal.  The range of apnea-hypopnea index (AHI) of 

patients was 12.5~85.45.  

ECG clips:  Total 125 simultaneous ECG and RIP 

signal clips (10-second preceding and 10- second 

following the onset of CSA events) from 125 pre-scored 

CSA events with/without arousals were extracted for 

analysis in this study.  

 

2.2.  ECG derived respiratory (EDR) 

signals from wavelet decomposed ECG 

signals  

Wavelet-EDR: A discrete wavelet transform of 20-

second ECG clip during central apnea breathing episodes 

was used to decompose into a set of approximate and 

detailed coefficients of level up to 10. Reconstructed 

detailed coefficients up to level 10 were computed. A 

symlet wavelet with order 8 was chosen as the mother 

wavelet for decomposition. Reconstructed decomposition 

level 8, 9 and 10 (i.e., 0.12-0.5 Hz) was chosen as the 

wavelet-EDR feature.   Wavelet decomposition of ECG 

signals (during central apnea breathing episodes) of a 

sleep apneoa patient (AHI=48.5) are illustrated in Figure 

1. 

 

2.3.  Support vector regression 

 

In this study, support vector regression (SVR) model 

was considered to automatically recognize CSA from 

ECG features. In order to match the number of samples in 

RIP as the target signal (total 640 samples in 20 seconds 

with sampling frequency 32 Hz), wavelet-EDR signals 

were resampled using cubic spline interpolation 

(MATLAB) to make 640 samples. The basis of SVR 

theory is to nonlinearly map the input data into some 

(possibly infinite dimensional) feature space where the 

problem may be treated as a linear one. In particular, 

when tackling regression problems using SVR, the output 

is a linear function of position in feature space. However, 

the complexities of this feature space (and the non-linear 

map associated with it) are “hidden” using a kernel 

function. It is this ability to hide complexity (resulting in 

a simple linearly constrained N-dimensional quadratic 

programming problem with no non-global minima), 

along with the ability to use complex models while 

avoiding overfitting, that has made SVR methods so 

popular over recent years. The major difference between 

Support Vector Machines (SVMs) and many other Neural 

Network (NN) approaches is that instead of tackling 

problems using the traditional empirical risk 

minimisation (ERM) method, SVMs use the concept of 

regularised ERM. This has enabled people to use SVMs 

with potentially huge capacities on smaller datasets 

without running into the usual difficulties of overfitting 

and poor generalisation performance. The theory of SVR 

can be found in [4].  

Radial basis function (RBF) defined as 
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as the kernel function where j denotes the width of the 

RBF. In this study, j=0.7 is used for all experiments. 

 

  2.4.  Training and testing the linear SVR  

 A twenty five-fold cross validation scheme was 

adopted to evaluate the generalization ability of the SVR 

as a classifier for CSA. In this scheme, 125 events data 

set was uniformly divided into 25 subsets with 5 events 

were used for testing and the remaining 120 records were 

used to train SVR parameters. This was repeated for other 

subsets so that all subsets were used as the cross 

validation test sample. Only RBF kernel was tested in this 

study.  Maximum mean cross validation accuracy was 

found to be 92% with C=26; i=2-2 using RBF kernel 

where C is the coefficient for trade-off between empirical 

and structural risk and i is the width of i-insensitive 

region. The best feature subset was the combination of 

the wavelet decomposition level (level 9 and 10; 0.12-

0.24 Hz) of ECG signals. Parameter optimization was 

performed using cross-validation set with each 

experiment being repeated 25 times.  

A grid search proposed Bao [5] was used in this study 

for parameters setting of C and i. To reduce the 

computational burden, a finer grid search on that region 

was conducted only after identifying a better region on 

the grid.  We first used a coarse grid search and found the 

best (C, i) as (28, 2-2) with ten-fold cross-validation 

accuracy 88.5% on 50 OSA and 50 CSA events. After the 

best (C, i) was found, the model was trained with whole 

training set (125 events) again to generate the final 

classifier. The parameter set of C and i which generated 

the maximum CSA recognition accuracy (92%) was 

considered as the best parameter set. All SVM 

architectures were trained and tested on the MATLAB 

SVM toolbox [6]. 

 

3. Results 

Figure 2 shows RIP (thoracic movement) signal and 

SVR based surrogate respiratory signal of (10-second 

preceding and 10- second following the onset of CSA 
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events) from a pre-scored CSA event. Figure 3 shows the 

correlations of percentage (%) drop in thoracic and 

surrogate respiratory signals from 10 second preceding 

the events for 125 CSA events. Significant correlation 

(r=0.51; p<0.01) was found between reductions in 

thoracic and that in surrogate respiratory signals. Using 

surrogate respiratory signals 115 CSA events are 

correctly recognized. 85% drop from the preceding 

thoracic movement was considered as the threshold. 

The Bland-Altman plot is the preferred method for 

assessing whether an established and a new measurement 

technique agree. It shows the paired difference between 

two observations on each subject against the mean of 

these two observations. Figure 4 shows Bland-Altman-

plots for CSA events. Percentage (%) drop in thoracic 

signals during CSA events was overestimated by less 

than 2% (mean bias= +1.31%; +2 SD: + 7.91%, -2 SD: -

5.28%).  
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Figure 1. Two-minute recording of thoracic movement 

signal (volts), ECG signals and its reconstructed wavelet 

detailed decomposition up to level 10 of a sleep apneoa 

patient (AHI=48.5) during four central apnea breathing 

episodes. Wavelet decomposed ECG signals were 

resampled using cubic spline interpolation to make 3840 

samples. 
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Figure 2. An example of thoracic signal (panel A)  and 

SVR based surrogate respiratory signal (panel B) 10 

second preceding and 10 second after the start of a CSA 

event. The dashed line represents the start of the pre-

scored CSA event. 
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Figure 3. Percentage (%) drop in thoracic and surrogate 

respiratory signals from 10 second preceding the events. 

Total 125 CSA events are shown. Using surrogate 

respiratory signals 115 CSA events are correctly 
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recognized. 85% drop from the preceding thoracic 

movement was considered as the threshold.  
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Figure 4. Bland-Altman plot of the relationship of  the 

difference between  % drop in thoracic signal and % drop 

in surrogate respiratory signals  for 125 CSA events 

versus their average value. Mean bias (—), +2SD and -

2SD lines are shown. SD= standard deviation. 

 

4. Discussion and conclusions 

The study results indicate a correlation between 

changes in amplitudes of surrogate respiratory signal 

obtained from ECG and the amplitudes of breathing 

movement during CSA.  Results also showed that SVR 

with an optimal parameter set correctly recognized 

115/125 CSA events (92% recognition). An important 

aspect of our work is that postural position appears to 

have only a small effect on the wavelet-EDR estimates 

because wavelet decomposition excludes the body 

position influence on ECG. 

Model parameters such as C and 伊are selected by users 

based on a priori knowledge and/or user expertise [7]. 

Obviously, this approach is not appropriate for non-

expert users. It is well known that SVR generalization 

performance (estimation accuracy) depends on a good 

setting of meta-parameters parameters C, i and the kernel 

parameters. The problem of optimal parameter selection 

is further complicated by the fact that SVR model 

complexity (and hence its generalization performance) 

depends on all three parameters. Existing software 

implementations of SVR usually treat SVR meta-

parameters as user-defined inputs. In this paper we 

focused on the choice of C and i, rather than on selecting 

the kernel function. Parameter C determines the trade off 

between the model complexity (flatness) and the degree 

to which deviations larger than i伊伊 are tolerated in 

optimization formulation. For example, if C is too large 

(infinity), then the objective is to minimize the empirical 

risk only, without regard to model complexity part in the 

optimization formulation. Parameter i伊伊 controls the width 

of the i 伊伊-insensitive zone, used to fit the training data. 

The value of i伊 can affect the number of support vectors 

used to construct the regression function. The bigger i伊, 
the fewer support vectors are selected. On the other hand, 

bigger i -values result in more ‘flat’ estimates. Hence, 

both C and i-values affect model complexity (but in a 

different way). 

 In addition to CSA recognition, other potential 

application of our model may be to assess the severity of 

airway obstruction in patients with obstructive airway 

disease including asthma, bronchiolitis, and chronic 

obstructive pulmonary disease (COPD).  
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