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Abstract

Obstructive sleep apnea (OSA) causes a pause in air-

flow with continuing breathing effort. In contrast, central

sleep apnea (CSA) event is not accompanied with breath-

ing effort. The aim of this study is to differentiate charac-

teristics of CSA and OSA using wavelet packet analysis of

ECG signal over 5 second period and support vector ma-

chines. Six patients were used in the study that contained

both CSA and OSA events. Eight level wavelet packet anal-

ysis was performed on each 5 sec clip using Daubechies

(DB3) mother wavelet. Two features namely the best tree

and the entropy of the best wavelet tree were extracted from

each clip. One patient was used for testing at a time while

all other patients’ data was used for training. The accu-

racy range was between 82% and 92% with best tree as

features. Entropy of best tree resulted in improved accura-

cies ranging between 87% and 94.5%.

1. Introduction

Healthy sleep is an essential mechanism for maintain-

ing mental as well as physical health. Temporary seizure of

respiration during sleep is referred to as sleep apnea. Sleep

apnea can be broadly classified into hypopnea caused

due reduction in airflow, obstructive sleep apnea (OSA)

caused due to upper airway collapse and central sleep ap-

nea (CSA) caused due to lack of neural input from the cen-

tral nervous system [1]. If the rate of apnea is greater than

five per hour it is usually referred to as sleep apnea syn-

drome and has to be clinically evaluated and treated [1].

There are many methods to diagnose sleep apnea.

Polysomnography is a standard method for sleep apnea

diagnosis where the patient has to spend the whole night

in a sleep lab. Several parameters such as nasal pressure,

abdominal effort, thoracic effort, EEG and ECG are col-

lected and manually scored by an expert. There has been

lot of effort of late to automate this scoring specifically

using ECG alone. The effort in this work is to find charac-

teristic difference in ECG between central sleep apnea and

obstructive sleep apnea which occur in the same patient.

In some sense, the focus of this work is to characterize the

pathogenesis of OSA and CSA [2] using time frequency

analysis. Recently, Thomas et al. [3] have reported moder-

ate accuracies to differentiate OSA and CSA but their work

has been very exhaustive. They use spectrograms to differ-

entiate between subjects with OSA and CSA. In this pa-

per, wavelet packet analysis with support vector machines

is used to address the same issue using short term ECG sig-

nal. Six patients are chosen for this study who showed both

CSA and OSA during the polysomnographic studies. Our

earlier work using discrete wavelet transform and neural

networks has been improved to differentiate between OSA

and CSA [4].

2. Methods

Classification of apnea into obstructive and central sleep

apnea is one of the most challenging stages in automatic

detection and labeling of apnea specifically when ECG is

used for classification. This is because of the fact that there

is a high degree overlap in characteristics of the ECG sig-

nal between OSA and CSA. We use wavelet packet anal-

ysis to represent the ECG signal for classifying between

CSA and OSA. In this section the proposed methodology

using wavelet packet analysis and support vector machines

is presented.

In total, 6 overnight sleep studies were used to develop

our classification algorithms and provide an independent

test performance assessment of our model. Sleep stud-

ies were collected from the database of Institute of sleep

and breathing, Austin Hospital, Melbourne, Australia. The

polysomnograms of 6 sleep apnoea patients who showed

both OSA and CSA in the manually segmented recordings.

All subjects were free of any cardiac history. The number

of CSA and OSA epochs of the six patients analyzed is

summarized in table 1.

2.1. Wavelet packet analysis

Wavelets [5, 6] are mathematical functions that decom-

pose the data into different frequency components and

study each component with a resolution matched to its
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Figure 1. Illustration of 8 level Wavelet Packet Analysis and the Corresponding Bin numbers used in this work

Table 1. Number of five second CSA and OSA epochs in

different patient datasets used in analysis
Patient Number of Number of

ID CSA epochs OSA epochs

38 535 1551
51 104 1204
53 135 5167
61 349 7934
62 135 5167
70 349 7934

scale. This is a fast, linear, invertible orthogonal transform

with the basic idea of defining a time-scale representation

of a signal by decomposing it onto a set of basis functions,

called wavelets. They are suitable for the analysis of non-

stationary signals since it allows simultaneous localization

in time and scale.

The continuous wavelet transform (CWT) of a function

f using a wavelet function basis is defined by Equation 1.

f(a, b) =
1√
a

∫

f(t)Ψ∗(
t − b

a
)dt (1)

where Ψ(t) is called the mother wavelet function, a is the

scaling (compression or dilation) coefficient, b is the trans-

lating (shifting) coefficient and 1√
a

is a normalizing factor

which is applied to make the transformed signal have the

same energy at every levels. All the wavelet functions used

in the transformation are derived from the mother wavelet

through translation (shifting) and scaling (dilation or com-

pression).

There are a number of basis functions that can be used as

the mother wavelet. Since the mother wavelet produces all

wavelet functions used in the transformation through trans-

lation and scaling, it determines the characteristics of the

resulting wavelet transform. Depending on the application

the appropriate mother wavelet has to be chosen for effi-

cient working of the wavelet transform. Daubechies third

order moments (db3) has been chosen as mother wavelets

for feature extraction in our analysis.

The regular wavelet decomposition method described

above may not yield the best result always. Hence a

more exhaustive decomposition as shown in figure 1 can

be used [7]. This is referred to as wavelet packet analy-
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sis. In this method, the signal is initially decomposed into

two subbands at level 1 (denoted by bins 1 and 2 in fig-

ure 1). If the maximum frequency contained in the signal

is 64 Hz, bin 1 represents frequencies from 0 to 32 Hz and

bin 2 represents frequencies between 32 and 64. Further

decomposition at level 2 would result in bins 3, 4, 5 and 6

with frequency range between 0-16, 16-32, 48-64 and 32-

48. We perform decompositions up to level 8 which results

in 510 bins. However, as only the best tree was being used,

approximately 25 features per clip was used in classifica-

tion. Once the signal is decomposed, best tree based on

Shannon’s criterion is calculated. If the bin is a part of the

best tree, then we use one to represent this zero otherwise.

This will result in a sparse matrix as only 25 bins on an av-

erage form a part of the best tree. To achieve better result,

we also calculate entropy of the best tree and use them in

second set of experiments.

2.2. Support vector machines

Support Vector Machines introduced by Vapnik [8] are

a relatively new class of learning machines that have

evolved from the concepts of structural risk minimiza-

tion (SRM) [9] and regularization theory. They are also

known as maximum margin classifiers as they simultane-

ously minimize the empirical classification error and max-

imize the geometric margin. A SVM performs classifica-

tion by constructing an N-dimensional hyperplane that op-

timally separates the data into two categories.

By combining max-margin classification and empirical

risk minimization, using structural risk minimization, and

also applying the kernel trick to achieve nonlinearity, sup-

port vector machines are able to tackle highly complex

classification tasks and generalize well without suffering

from over-fitting or the so-called ”curse of dimensional-

ity”. They are also mathematically tractable and have a

unique global solution, both of which are highly desirable

traits. The basic idea of SVM theory is to (implicitly) map

the training data into higher dimensional feature space. A

hyperplane (decision surface) is then constructed in this

feature space that bisects the two categories and maximizes

the margin of separation between itself and those points

lying nearest to it (the support vectors). This decision sur-

face can then be used as a basis for classifying vectors of

unknown classification.

The SVM Light [10] implementation for support vector

machines was used in all the experiments. The radial ba-

sis function (RBF) kernel given in Equation 2 is used for

testing the features.

K(x, y) = exp

(−‖x − y‖2

γ

)

(2)

Both the sets of features were used separately for classifi-

cation using the support vector machines. Radial basis ker-
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Figure 2. Histogram of bin coverage by best trees of all

OSA and CSA epochs

nel with parameters C = 100 and gamma of 0.1 was chosen

for final testing after parameter grid analysis. Leave one

patient out error was calculated.

3. Results

To understand the frequency distribution of ECG signal

during OSA and CSA, best tree and entropy of the best

tree were used. By closely analyzing the packets, OSA

best tree was predominantly found in the left hand side of

the figure 1 indicating the role of low frequency compo-

nent. However, CSA best trees were predominantly on the

middle and right side of the figure 1. To show that the bins

occupied by the two cases were almost mutually exclusive,

we plot the histogram of the first 100 wavelet packet bins

as shown in figure 2. As it can be clearly seen, the bin

occupancy is quite different for both the cases. This was

the motivation behind trying a non-linear classifier such as

support vector machines.

In the second part of the experiments, support vec-

tor machines were used to classify the WPA features ex-

tracted. The results of the best tree features and the entropy

of the best tree features are shown in table 2. As it can be

seen, the accuracy of best tree analysis range from 81.87%

to 91.74%. In comparison, entropy of best tree as features

resulted in accuracies ranging from 86.93% for patient 51

to 94.51% for patient 53. The sensitivities and specificities

for both analysis are higher than 0.8 which indicates that

the model is neither over-fit nor under-fit. Another impor-

tant point to note is the specificity values being higher for

entropy of best tree compared to best tree features. This
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Table 2. Results using Wavelet Packet Analysis
Best Tree Analysis Entropy of Best Tree Analysis

Patient ID Sensitivity Specificity Accuracy (%) Sensitivity Specificity Accuracy (%)

38 0.88 0.85 85.95 0.94 0.90 90.80
51 0.96 0.91 91.74 0.94 0.86 86.93
53 0.83 0.82 81.87 0.92 0.95 94.51
61 0.86 0.87 86.93 0.92 0.88 88.41
62 0.90 0.86 85.87 0.90 0.94 94.00
70 0.92 0.83 83.56 0.89 0.91 90.69

indicates that there is a reduction in false alarms in five

patients out of six when compared to the best tree analysis.

4. Conclusions

In this paper, a new algorithm using wavelet packet anal-

ysis as features and support vector machine as classifier

is proposed for automatically classifying central sleep ap-

nea (CSA) and obstructive sleep apnea (OSA). ECG sig-

nals over 5 second period is used in analysis. Six patients

were used in the study that contained both CSA and OSA

events. Two features namely the best tree and the entropy

of the best wavelet tree were extracted from each clip after

decomposing the signal into 8 levels using db3. Analysis

of best tree for CSA and OSA events indicated that OSA is

pre dominantly in the low frequency region. However, best

tree of CSA clips was appearing on both high frequency

and low frequency regions, specifically between 64 to 96

Hz. This was found to be the distinguishing feature be-

tween OSA and CSA. The combined result was 85.09%

accuracy, 0.88 sensitivity and 0.84 specificity for best tree

analysis. For entropy of best tree, accuracy of 91.16% was

obtained with 0.92 sensitivity and 0.91 specificity. These

results indicate the possibility of non-invasively classify-

ing CSA and OSA events based on shorter segments of

ECG signals.
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