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Abstract

Positron Emission Tomography is a state of art func-

tional imaging technique used in accurate detection of

cancer. Regions of interest including tumor in the tho-

racic region face a unique problem of movement due to

the involuntary motion of the organs. To avoid irradia-

tion of healthy tissues during radiotherapy treatment plan-

ning, accurate tracking of the moving parts during differ-

ent stages of cardiac cycle is recommended. Cardiac gat-

ing is a process of dividing a single cardiac cycle into sev-

eral phases and sorting the data into each of these phases

according to the location of the acquired image. The aim

of this study is to accurately track the movement in cardiac

gated PET images. The proposed method is a two stage

approach with an initial preprocessing stage and level set

deformable model is used in the second stage. The pro-

posed method is tested on six patients’ cardiac gated data

resulting in accuracies ranging between 87% and 94% in

terms of percentage volume overlap.

1. Introduction

Lung carcinoma is caused by the uncontrolled growth

and division of cells in the lungs. According to a 2008 sur-

vey from the American Cancer Society (www.cancer.org),

lung cancer afflicts about 3 million people, and is a ma-

jor cause of death in the developing world. A recent arti-

cle on an Australian government web-site (Health In-site,

www.healthinsite.gov.au) indicates that lung cancer is the

leading cause of death in Australia killing about 7000 peo-

ple every year. Only one in ten patients diagnosed with

lung cancer will survive the next five years.

Positron emission tomography is a powerful and ver-

satile imaging tool for detecting lung cancer. It offers a

unique opportunity to visualize and measure the patho-

physiology and key biological parameters that influence

the disease diagnosis, development and outcome. In gen-

eral, PET scans measure important body functions, such as

blood flow, oxygen use and glucose metabolism to evaluate

how well organs and tissues are functioning.

Gating is a technique that reduces the smearing effect

on the images by providing clearer and improved visual-

izations of tumors during respiration. In order to correct

the lung motion and heart motion on the images, PET data

is divided into small parts with each part representing only

a fraction of the total motion based on either respiratory cy-

cle or cardiac cycle. This division is called gating and are

called respiratory gating and cardiac gating respectively.

Accuracy in delineating the volume of the region of inter-

est is extremely important for proper radiotherapy treat-

ment planning. The definition of target or tumor volumes

in lung cancer by the treating physician has been found to

bear the largest source of error in the whole chain of ra-

diotherapy [1] treatment. With each breath or heart beat,

organs in the chest and abdomen move. As the lungs ex-

pand and contract while inhaling and exhaling, lung tu-

mors move within a 2-inch range and may even change

shape, making precise targeting of radiation beams diffi-

cult. When treating the tumor with external radiation, the

physicians include certain extra margin (up to 2.5 cm.) of

healthy tissues surrounding the detected tumor volume for

radiation, to cater for tumor movement during respiration.

Hence thoracic motion often results in overestimation of

the volume of the lung lesions, which in turn results in de-

stroying more healthy tissues around the tumor.

We have dealt with automatic tumor volume delineation

using respiratory gating elsewhere [2] and will concentrate

on cardiac gating in this work. In cardiac gating of the nor-

mal heart rhythm of the patient is divided into eight parts

by using the cardiac cycle. The PET list-mode (event by

event) data is sorted into these eight gates in accordance

with the phase of cardiac signal, thus resulting in eight im-

age sets with reduced motion [3]. Compared to our earlier

work [2], the following improvements are made apart from

using cardiac gated images (a) the type of images consid-

ered are much more noisier with different types of noise (b)

the machine learning step proposed earlier is completely
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bypassed as this introduced lot of false alarms due to the

presence of noise. Moreover, in cardiac gated images both

tumor and the other regions of interest such as the heart

is tracked simultaneously. To achieve this, a preprocess-

ing step based on the standard uptake value (SUV) is per-

formed followed by level set deformable model for tumor

tracking.

2. Methods

In this section, brief description of the data, preprocess-

ing using standard uptake value and level set method is pre-

sented. The data was collected from two separate sources

in Melbourne and Brisbane in Australia between 2006 and

2008. Totally six patient datasets are used in the analy-

sis of the proposed method. A brief summary of the data

is given in table 1. It should be noted that due to lack of

availability of data, only one data with tumor was available

and all other datasets had heart movement which is used in

the region of interest tracking.

2.1. Preprocessing using SUV

Standardized uptake value [4] is the most commonly

used parameter in clinical practice to quantify the inten-

sity of radio tracer F-18-fluoro-deoxy-glucose (FDG) up-

take in tumors. This has been used as an index of glu-

cose metabolism to classify malignant tumors based on

the amount of uptake in the given region of interest in

relation to the average uptake throughout the body. Tu-

mor cells metabolize more glucose than normal or healthy

cells. Hence, in general, if the tumor is present it appears

brighter than healthy cells in a PET image. Calculation of

SUV [5] is the most common way to compare the regions

of interest between different patients. For each voxel, as-

suming 1cc = 1g SUV is calculated by applying equation

SUV = Y W

D
, where Y is the activity concentration in

Bq/cc, W is the patient weight in kilograms (kg) and D
is the injected dose at the start of the scan expressed as

Becquerel (Bq). Tissue activity concentration Y is cal-

culated using the formula Y = ax + b, where x is the

original pixel intensity value, a is the rescale slope and b is

the rescale intercept for each image slice of the PET scan.

With this definition, if the injected dose were uniformly

Patient Number of Slices Nature of the
ID 2D images per frame dataset

P1 376 47 Clean, Tumor and Heart
B1 360 45 Noisy, Heart
B2 280 35 Noisy, Heart
B3 288 36 Clean, Heart
B4 336 42 Noisy, Heart
B5 360 45 Very Noisy, Heart

Table 1. Summary of the data used in this study. All

patients had 8 frames of data.

distributed over the entire body, then the SUV values ev-

erywhere would be approximately equal to 1. In general

the higher the SUV value, the more aggressive is the tissue

activity which applies for both heart and tumor in the tho-

racic region. Most investigators choose an SUV threshold

of 2.5 to differentiate benignity from malignancy in lung

lesions [6]. SUV runs into controversy [7] in defining this

threshold value because of the various physical parameters

like patient weight, glucose level, length of the uptake pe-

riod and body composition that are involved for this value

calculation. In this work, after analyzing the data a SUV

threshold of 2 is chosen. If the SUV value is greater than

or equal to 2.0, the pixel is taken as the foreground; other-

wise, it is taken as background. Because of noise in the im-

age, accurate final segmentation cannot be accomplished

with this step. However, there is huge reduction in noise

by using this step for pre processing.

2.2. Level set deformable models

A deformable model was introduced by Kass et al. [8] in

2D as explicit deformable contours and this was general-

ized to 3D by Terzopoulos et al. [9]. Deformable model

are curves or surfaces defined within an image domain.

By incorporating other prior information about the object

shape, these models offer robustness to both image noise

and boundary gaps. In the level set method [10], the model

M is implicitly defined as the zero level set of a higher di-

mension function v. Starting from a given shape M0, the

model is able to evolve towards the shape of the object, ac-

cording to the first-order evolution law given in equation 1

∂M

∂t
= F �N = (Fint + Fext) �N (1)

with F representing the force applied on the surface and

the surface normal vector �N . This force F is decomposed

into internal component Fint and external component

Fext. Given an initial surface M0, the level set function

is v(x, y) = d((x, y), M0) where d is a signed distance.

The initial contour is defined as M = (x, y)|v(x, y) = 0.

v is represented as a distance map. The map values out-

side the contour are positive while inside they are nega-

tive [11]. The level set method shows that the model evo-

lution shown in equation 1 corresponds to an evolution of

the distance map satisfying the equation 2

∂v

∂t
= F‖∇v‖ = (Fint + Fext)‖∇v‖ (2)

where v(x, y, t) is the evolutive distance map. Equation 2

is only valid at the model location. As a consequence,

the distance map of v will not be preserved. In order to

cope with this problem there is a need to re-initialize v
periodically so that it corresponds to a distance map. Un-

fortunately, there are many drawbacks associated with re-
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initialization. A new variational formulation for geomet-

ric active contours which completely eliminates the need

of the costly re-initialization procedure has been proposed

by Chunming et al. [12] and is used in this work. Their

variational formulation consists of an internal energy term

that penalizes the deviation of the level set function from a

signed distance function, and an external energy term that

drives the motion of the zero level set toward the desired

image features, such as object boundaries. The resulting

evolution of the level set function is the gradient flow that

minimizes the overall energy function.

In spite of using the new algorithm without re-

initialization, there is another drawback with this algo-

rithm. The initialization and the number of iterations re-

quired for accurate detection has to be manually input by

trial and error. A very simple yet effective strategy to

address this issue has been proposed. The first frame is

subjected to normal algorithm with the entire region as

the initial boundary. The number iteration is set to fairly

large number and the algorithm is initiated. This is val-

idated by the expert and the corrections to the boundary

are suggested to the algorithm using a custom made GUI

where the level set convergence is available for tracking the

progress in the reverse direction. For subsequent frames,

the small area around the region of interest detected in the

first frame is used as initial contour for subsequent frames.

The number of iterations is obtained from the first frame

which is already validated by the expert using the reverse

tracking process. This ensures that the time taken for sub-

sequent frames is relatively lesser and the region of interest

tracking is more accurate with less false alarms.

3. Results

The results are summarized in table 2. Overall percent-

age overlap volume between manually segmented and the

automatically segmented images ranged between 87% for

patient B5 to 94% for patient P1. The time taken for the

first frame varied depending on the volume and took 2 min-

utes to 8 minutes. After expert validation, the time taken

for the remaining frames including expert validation was

much lesser. This is encouraging as the method not only

reduces expert fatigue due to manual segmentation but also

enables more consistency in segmentation between frames

and subjects. As expected the noisy data of patient B5 re-

sulted in least accuracy of 87% in terms of percentage vol-

ume overlap and took maximum amount of time to com-

plete. The segmentation results of 6 slices from different

subjects is shown in figure 1. The top three sub-figures are

results of good segmentation and the bottom three show

the results of average segmentation. The false alarms and

the region of interest detection in the bottom row are not as

accurate as the images in the top row. The middle image in

the top row shows the results of patient P1 where both the

Frame 1 Frames 2 - 8

Patient Time EV Time taken EV ROI
ID taken for volume

other overlap
frames

(min) (min) (min) (min) %

P1 4 20 20 30 94

B1 5 25 15 45 91

B2 3 15 16 30 89

B3 2 16 11 42 90

B4 4 25 19 35 89

B5 8 30 23 76 87

Table 2. Overall results (last column) and time evalua-

tion using the proposed method. EV - Expert Validation

(approximate time); ROI - Region of Interest

heart and the tumor are detected accurately. Once we have

this result for the first frame, the expert can remove heart

as the region of interest and only the tumor can be tracked

in the subsequent frames. However, the results calculated

in this paper is for both the regions of interest.

4. Conclusions

Positron Emission Tomography plays a major role in

detecting cancer in thoracic regions which is one of the

most lethal of cancers worldwide. To avoid irradiation of

healthy tissues during radiotherapy treatment planning, ac-

curate tracking of region of interest including tumor during

different stages of respiratory or cardiac cycle is recom-

mended. Currently manual segmentation is used for radio-

therapy treatment planning which is tedious and inconsis-

tent. The aim of this study is to accurately track the move-

ment of the regions of interest specifically tumor in cardiac

gated PET images. The proposed method uses SUV based

pre-processing followed by a two stage tracking using de-

formable models. The method is tested on six patients’

cardiac gated dataset with percentage volume overlap in

the range of 87% and 94%. The overall time taken is much

lesser than manual segmentation including expert valida-

tion. Thus, the level set accurately delineated the tumor

volume from all eight frames, thereby, providing a scope

of using PET images towards planning an accurate and ef-

fective radiotherapy treatment for thoracic cancer.
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