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Abstract

In recent studies, Sample Entropy (SampEn) has demon-

strated that can be a very promising non-linear index to as-

sess atrial fibrillation (AF) organization from surface ECG

recordings. However, non-linear regularity metrics are no-

tably sensitive to noise. Thereby, in the present work, the

effect that noise provokes in the SampEn-based organiza-

tion estimation is analyzed. Given that AF organization

was estimated by computing SampEn over the atrial activ-

ity (AA) signal, to evaluate the noise impact on AA regular-

ity, 25 synthetic signals with different organization degrees

were generated following a published model. Noise com-

ing from real ECG recordings with different energy levels

was added to the synthesized AA signals to obtain differ-

ent signal to noise ratios (SNR). Results showed that Sam-

pEn, i.e., the AA irregularity, increased with noise, thus

hiding the differences between organized and disorganized

recordings. Precisely, in the presence of noise, SampEn

values were increased, in average, by factors of 1.64, 4.46,

9.46 and 14.23 for SNRs of 24, 15, 9 and 3 dB, respectively.

As a conclusion, a proper AF organization evaluation via

SampEn requires noise reduction in the AA signal.

1. Introduction

Non-linear analysis metrics are valuable in the assess-

ment of physiological time series, because “hidden infor-

mation” related to nonevident underlying mechanisms can

be sometimes obtained [1, 2]. To date, a high amount of

non-linear complexity measures exist, such as dimensions,

Lyapunov exponents and several kinds of entropies. How-

ever, their computation is frequently confronted with the

problem of insufficient number of data points [3]. Addi-

tionally, most dimension and entropy definitions present

application limitations associated to real world time series,

since all recorded data are, to a certain degree, contam-

inated by noise. In this respect, a 2% noise is serious

enough to prevent accurate estimation, like some studies

have demonstrated [4].

Recently, a method based on sample entropy (SampEn)

has been proposed to estimate organization of atrial fib-

rillation (AF) [5], which is the most common cardiac ar-

rhythmia in clinical practice and whose onset and termi-

nation mechanisms are still unknown [6]. The study of

AF organization is a key aspect in the arrhythmia’s knowl-

edge, because it provides information on the number of

active reentries [7, 8], which maintain and can perpetuate

AF. Thereby, in the present work, the noise effect on this

method, which could be useful to predict spontaneous AF

termination and the result other therapies, such as electri-

cal cardioversion or ablation, is exhaustively analyzed.

2. Materials

Given that AF organization has to be estimated by com-

puting SampEn over the atrial activity (AA) signal [5] and

because AA with no noise or ventricular residues cannot

be obtained from real ECG recordings, 25 one minute syn-

thetic AA signals were generated. Thus, the noise effect on

AA organization estimation could be evaluated. The syn-

thetic AA signals were obtained making use of the model

proposed by Stridh et al [9]. In this model, a sinusoid

and M − 1 harmonics are used to generate a sawtooth-like

shape of AF. The non-stationary behavior is created by in-

troducing a time-varying amplitude and cycle length of the

sawtooth signal. In every lead of N samples in length, the

AA is modelled by:

y(n) = −

M
∑

i=1

ai(n) sin(iθ(n)), n = 1, . . . , N, (1)

where the term ai(n) with the sawtooth amplitude, a, the

modulation peak amplitude, ∆a, and amplitude modula-

tion frequency, fa, is given by:

ai(n) =
2

iπ

(

a + ∆a sin 2π
fa

Fs

n
)

. (2)

The fundamental frequency of the fibrillation waveform is

assumed to vary around f0 with a maximum frequency de-

viation of ∆f and modulation frequency given by ff . The
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phase, θ(n), is then given by:

θ(n) = 2π
f0

Fs

n +
(∆f

ff

)

sin 2π
ff

Fs

n. (3)

After several tests, the selected parameters were

∆f = 3 Hz, ff = 4 Hz, ∆a = 10µV, fa = 9 Hz and

Fs = 1024 Hz in order to synthesize a signal as close as

possible to the real AA. In this respect, Figs. 1(a) and (b)

show a real AA signal obtained by applying the averaged

QRST cancellation technique and a synthetic AA signal

generated with the indicated parameters, respectively. Be-

cause of the typical AA fundamental frequency range is

3-9Hz [10, 11], a fundamental frequency f0 equal to 6 Hz

was selected. In order to obtain different regularities, the

number of harmonics M and their amplitude a were var-

ied, such that, a higher number of harmonics with lower

amplitude will generate a more irregular AA. In this way,

M and a were randomly selected between 5 and 15 and be-

tween 6 and 18 µV, respectively. Hence, the most irregular

AA signal presented 15 harmonics with 6 µV of amplitude.

The set of AA signals with different regularities were used

to evaluate if the noise effect was regularity-dependent. Fi-

nally, available noise in Physionet [12] coming from real

ECG recordings with different energy levels was added to

the synthesized AA signals. Concretely, this noise was the

recorded signal when the patient front-end is disconnected

from the skin electrodes. In Figs. 1(c) and (d), a synthetic

AA signal that has been added to the described noise with

two different energy levels is shown.

3. Methods

The 25 synthetic signals were used in order to evaluate

the noise impact on AA regularity. The same noise sig-

nal was superimposed to all synthetic AA signals, which

were generated with different degrees of regularity. Firstly,

SampEn values of the AA signals without noise were com-

puted. Next, the noise recording was weighed by different

gain factors and added to the synthetic signals in order to

obtain different signal to noise ratios (SNR). Finally, Sam-

pEn values of the synthetic AA signals contaminated with

noise were calculated. This methodology allowed us to

evaluate the evolution of AA regularity estimation in the

presence of noise.

The SNR of an ECG recording is normally lower than

30 dB [13]. In addition, because of the real AA signal is

obtained from ECG recordings using ventricular activity

cancellation techniques, the SNR of an AA signal must be

lower than the SNR of an ECG signal. In fact, the SNRs

of the AA signals obtained from 50 real ECGs analyzed in

a previous work were within the 16.4–2.7 dB range [14].

In this study, the SNR was defined as the ratio between the

mean of the fundamental and first harmonic power mag-

nitudes and the power magnitude of the background noise.
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Figure 1. Comparison example between real and synthe-

sized AA signals depending on added noise.(a) Real AA

signal obtained from the ECG through averaged QRST

cancellation technique. (b) Synthetic AA signal without

noise. (c) Synthetic AA signal with added noise and SNR

of 15 dB. (d) Synthetic AA signal with added noise and

SNR of 9 dB.

Whereby, AA signals with SNR of 24, 15, 9 and 3 dB were

generated.

3.1. Sample entropy

SampEn examines time series for similar epochs and as-

signs a non-negative number to the sequence, with larger

values corresponding to more irregularity in the data [2].

It is defined as the negative natural logarithm of the con-

ditional probability that two sequences of data values,

that are similar for m points, will remain similar at the

next point in the data set, within a tolerance r. Thus

SampEn(r, m) = −ln(A/B), where A and B are the

total numbers of forward matches of length m + 1 and m,

respectively [2].

Although m and r are critical in determining the out-

come of SampEn, no guidelines exist for optimizing their

values. Nevertheless, the most widely used values have

been those suggested by Pincus, i. e. m = 1 or m = 2 and

r between 0.1 and 0.25 times the standard deviation of the

original time series [15]. Hence, considering that previous

works, where SampEn was also applied to AF signals, re-
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ported the best results with m = 2 and r = 0.25 times

the standard deviation of the data [5,16], these values were

selected for the present study.

4. Results

Fig. 2 shows the noise effect results on AA organization

estimation via SampEn. As can be seen, SampEn values

for the 25 noise-free synthetic AA signals are shown and

increased with their corresponding SampEn values for 24,

15, 9 and 3 dB SNR, respectively. Remmark that SampEn,

i.e., the AA irregularity, increases with noise, thus hiding

the differences between organized and disorganized activ-

ities. Precisely, in the presence of noise, SampEn values

were increased, in average, by factors of 1.64, 4.46, 9.46

and 14.23 for SNRs of 24, 15, 9 and 3 dB, respectively.

In addition, the difference between the two signals without

noise that presented the highest and lowest SampEn values

was reduced by factors of 1.07, 1.29, 2.05 and 4.67 for the

signals with SNRs of 24, 15, 9, and 3 dB, respectively.

5. Discussion and conclusions

Results showed that the noise presence masks the dif-

ferences, evaluated with SampEn, between organized and

disorganized activities. Thereby, it could be considered

that when AA is contaminated by noise or any other unde-

sired signal, the organization difference between terminat-

ing and non-terminating paroxysmal AF episodes are con-

siderably reduced. This fact is crucial, for example, in the

successful prediction of paroxysmal AF termination. Con-

sidering that the AA obtained from the ECG often presents

QRS residua and noise [17], the obtained results with syn-

thetic AA signals can be used to justify the poorer discrim-

ination outcome reported by other groups when direct AA

organization analysis was applied [14].

Moreover, the results are also coherent with the im-

proved paroxysmal AF termination prediction reached by

applying SampEn to the fundamental waveform associated

to the AA [18], its wavelength being the inverse of the

dominant atrial frequency (DAF) [19]. As this signal is ob-

tained by applying a selective filtering to the AA centered

on the DAF, most part of the undesired contaminating sig-

nals are avoided. As a consequence, to obtain a successful

AF organization assessment through SampEn, noise and

nuisance interferences in the AA signal should be consid-

erably reduced before computing the non-linear index.

Finally, it is noteworthy that the same experiment by

adding Gaussian noise instead of ECG noise to the synthe-

sized AA signals was also tested. In this case, results were

very similar, hence, they were omitted in the manuscript.

However, bearing this similar behavior in mind, any other

kind of random and non-deterministic contaminating sig-

nal should provoke similar results of SampEn.
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