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Abstract

Considering the inability of existing methods to pro-

duce remainder ECGs free from QRS residuals, the present

study puts forward a new method for ventricular (QRS)

residual detection and reduction in remainder ECGs ex-

tracted for the analysis of atrial fibrillation (AF). Autore-

gressive interpolation (AR) is applied to reduce the am-

plitude of any QRS residual detected as not negligible by

a newly-proposed index, considering the QRS interval as

missing, and replacing its samples through interpolation.

Performance has been evaluated on a dataset composed of

19 remainder ECGs with AF. Mean (±SD) spectral con-

centration improved from 56.7±12.8 % of the original re-

mainders to 58.1±13.3 % of the interpolated ones, while

mean (±SD) amplitude of original and processed QRS-T

segments was 0.05±0.03 mV. The proposed algorithm was

found to improve the quality of the extracted AA remain-

ders without attenuating their mean amplitudes inside the

QRST segments.

1. Introduction

An appropriate way for studying atrial fibrillation (AF)

is through the noninvasive analysis of the atrial activity

(AA) signal extracted from the surface electrocardiogram

(ECG) recorded during AF episodes [1].

There exist in the literature different families of methods

to extract AA from an ECG, based on the direct estima-

tion of the AA (e.g., [2–4]), or to cancel out ventricular ac-

tivity through a direct suppression of the QRS-T complex

(e.g., [5, 6]). However, up to now there is no method able

to control the magnitude of the ventricular (QRS) residu-

als and to produce a remainder ECG completely free from

them, so that QRS residuals can be several times larger

than the surrounding AA waves. Although this shortcom-

ing may be neglected when computing global measures

from the AA signal, it must nonetheless be taken into ac-

count when performing detailed analysis, e.g., tracking

variations in AF frequency [7] or characterizing the AA

waveform morphology [8] on a second-to-second basis.

Then, there is a need to test the residual relevance, possibly

avoiding visual inspection of the remainder ECG, and, if

needed, replace them with samples which are better tuned

to the surrounding AA waves.

The present study puts forward a new method for QRS

residual detection and reduction in the remainder ECGs.

The method is based on an autoregressive (AR) interpo-

lation of the segments which contain not negligible QRS

residuals, treating these segments as missing, to be re-

placed by model-based interpolation using surrounding

samples.

2. Methods

2.1. Basic auto-regressive interpolation

QRS residuals can be treated as a sequence of missing

samples. The objective is to make an optimal estimate of

these missing samples, through AR interpolation based on

surrounding samples [9]. Assuming the AA signal as rea-

sonably stationary within two cardiac periods, that is about

the temporal length of one QS segment (the unknown part

of the signal, x
Uk

) surrounded by two SQ segments (the

known part, x
Kn

, so that x = x
Kn

+ x
Uk

), a stationary

AR formulation of the problem can be considered

x(m) =

p
∑

k=1

akx(m − k) + e(m) (1)

where x(m) is the AR signal, ak the model coefficients,

p the model order, and e(m) a zero mean excitation sig-

nal (supposed to be zero in the following). We can firstly

obtain an estimate of the model coefficient vector a from

â = (XT
Kn

X
Kn

)−1(XT
Kn

x
Kn

) (2)

where X
Kn

contains all the x(m− k) involved in the esti-

mation of x
Kn

[9]. Then, the estimates of the model coeffi-

cients are used to interpolate the missing samples, leading

to the estimate of the unknown data vector

x̂
Uk

= −(AT
1
A

1
)−1(AT

1
A

2
)x

Kn
(3)
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where A
1

and A
2

are coefficient matrices defined as in [9],

in which each row is constructed arranging elements of â

so as to generate the predictor error e = A
1
x

Uk
+A

2
x

Kn
.

2.2. Exclusion criterion for QRS residuals

reduction

A criterion is needed for judging whether the QRS resid-

uals are to be kept or replaced by interpolated samples. To

this purpose, Alcaraz and Rieta proposed a specific crite-

rion, named ventricular residue (V R) index [10], defined

for the i-th QRS complex as

V Ri =
1

1

Q

∑Q
q=1

x̂2
AA

√

√

√

√

√

ri+H
∑

k=ri−H

x̂2
AA

· max
k=ri−H,...,ri+H

(| x̂AA |)

(4)

where 2H + 1 denotes the number of samples correspond-

ing to the QRS interval (considered as 100 ms long), Q

the samples of the AA involved, ri the R peak occurrence

time, and x̂AA an estimate of the AA. However, in order

to improve performance of this index, we preprocessed the

input of V R (the i-th QRS segment under analysis) with

a high-pass filter with a cut-off frequency of 12 Hz. This

cancels out part of the AF contribution from the calculus

of V R. The output of the filter was then used to calculate

V R. Finally, V R was normalized by the maximum of its

absolute value (V RN = V R
max(|V R|) ).

2.3. Simulated AF signals

Simulated AF signals were obtained from 4 subjects af-

fected by AF. The main advantage of taking an AA from

real ECG recordings is in having a physiologically coher-

ent representation of AF. All signals were acquired at a

sampling rate of 1 KHz and recorded using a standard

12-lead system. Preprocessing was done by applying a

zero-phase high pass filter with a -3 dB cut off frequency

at 0.5 Hz to remove baseline wander (<1 Hz) [11]. As

proposed in [3], atrial waves were simulated by isolat-

ing the AA from TQ intervals from lead V1 during AF

episodes and carefully extrapolating it between those seg-

ments. However, we chose simply to connect all the ex-

tracted TQ segments from the same patient, instead of get-

ting an interpolation of the QRS-T complex between them.

A total of 21 10-s long simulated AF recordings were gen-

erated.

2.4. Simulated QRS residuals

In order to have an accepted model for roughly model-

ing the QRS residual shape, we adopted the one presented

by Corino et al. in [12], with QRS residuals modeled by

a modulated Gaussian function. The following setup of

parameters was used

Parameter Value

FR 2 Hz

FS 1000 Hz

σS 1

L 100 samples

Simulated QRS residuals were added at specific time loca-

tions to the simulated AF signals. We selected 5 real AF

ECG R-peak event series from 5 patients affected by AF,

so as to generate 105 simulated remainder ECGs. The ad-

vantage of taking real AF R-peak event locations is in the

higher coherence with the patho-physiological RR series,

and in the automatic avoiding of overlap in time. Perfor-

mance of the method has been evaluated on simulated re-

mainder ECGs in terms of normalized mean square error

(NMSE), a measure that quantifies the difference with a

particular signal and its estimate

NMSE =

∑N

i=1(y(i) − ŷ(i))2
∑N

i=1 y(i)2
(5)

where y(i) denotes the reference signal, ŷ(i) an estimate

of it, and N its length.

2.4.1. Real AF ECGs

The method was evaluated on 19 remainder ECGs ac-

quired from patients affected by AF. A continuous V1

lead remainder ECG was obtained exploiting a suitable

blind source separation extracting approach [4]. Original

ECGs have been acquired at a sampling rate of 1 KHz and

recorded using a standard 12-lead system. Preprocessing

was carried out as described in Section 2.3. None of the

signals in this dataset was used to generate simulated AF

signals. Performance of the method has been evaluated

in terms of spectral concentration (SC) and signal ampli-

tude. SC is a measure for the compactness of the spectrum

around the AA central frequency (modal frequency in the

3-12 Hz interval) [3].

3. Results

3.1. Model order estimation

Model order estimation has been carried out exploiting

the 105 simulated remainders free from QRS residuals, in

order to evaluate the error introduced by the method and to

guarantee an acceptable tradeoff between model distortion

and model order value. The method was tested for differ-

ent model order p ranging between 1 and 50. Results are

visually presented in terms of NMSE in Fig. 1. A model

order of 25 was chosen for subsequent analysis, since it

gave an acceptably small mean NMSE of 5.72%, which

did not reduce significantly for higher order values (5.34%

for p = 50), so as to be in a stable position after the knee

of the curve (around order 21).
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Figure 1. NMSE evolution vs. model order p, for the sim-

ulated remainder ECGs without presence of QRS residu-

als.

3.2. Exclusion criterion threshold estima-

tion

Simulated QRS residuals were added to the simulated

AF signals with different amplitude ratio (QRS amplitude

over AF amplitude), ranging from 0.1 to 10 (100 realiza-

tions). All QRS segments were processed. Results are vi-

sually summarized in Fig. 2 which shows that the qual-

ity of the interpolation is not influenced by QRS residual

importance (constant NMSE equals to 6.68% between the

original AF remainder and the interpolated, independently

on the amplitude ratio, dotted line). This is in line with the

way AR model operates, giving an output which does not

depend on the unknown segment that must be interpolated.

QRS residual interpolation is unnecessary until the NMSE

between the remainder ECGs and the original AF signals

(solid line) is lower than the error introduced by the model

(dotted line). The intersection is reached for an amplitude

ratio of 1.6, related to a value of V RN equals to 0.4.

3.3. Real AF ECGs

For real remainder ECGs interpolation was applied only

when V RN value for the QRS segment under analysis was

greater than a certain threshold. Tested thresholds ranged

from 0 to 1 (10 realizations). Fig. 3 shows the evolution of

SC and of the percentages of interpolated QRS segments

for different values of V RN . The lower V RN the higher

the number of QRS segments processed by the method,

and the better the SC of AF. Notice the plateau evolu-

tion of SC until V RN is lower than 0.3, and the sudden

reduction of SC for higher values of V RN , suggesting

0.3 is a suitable threshold for this parameter. The prox-

imity to the value found in Section 3.2 for simulated sig-

nals, confirms that a reasonable exclusion criterion thresh-
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Figure 2. NMSE evolution vs. amplitude ratio, for

the simulated remainder ECGs presenting QRS residuals.

NMSE between the interpolated signals and the original

AF signals (dotted line) and NMSE between the remain-

der ECGs and the original AF signals (solid line marked

by dots) are shown.

old should be set between 0.3 and 0.4. Mean (±SD) SC

improved from 56.7±12.8% of the original remainders to

58.1±13.3% of the interpolated ones. Mean (±SD) ampli-

tude of QRST segments of V1 was 0.23±0.16 mV, com-

pared to 0.05±0.03 mV of the original remainder ECGs

and to 0.05±0.03 mV of the interpolated remainder ECGs

(in line with the amplitude of TQ segments of original re-

mainders equals to 0.05±0.03 mV). The spectral content

improved by interpolation (∆SC of ≈ 2 between interpola-

tion of all QRS segments (V RN = 0) and no interpolation

(V RN = 1)), with no attenuation of the mean amplitudes

inside the QRS-T segments. Fig. 4 shows an example of

interpolation on a remainder ECG presenting evident QRS

residuals.

4. Discussion and conclusions

All methods which attempt to obtain a remainder ECG

completely free from ventricular activity suffer from the

inability to cancel out completely QRS-T complexes, so

that more or less significant QRS residuals can be still

present in the remainder ECG. This work introduced a

new method for getting rid of the QRS residuals within

a remainder ECG, independently on the way remainders

have been obtained. Although the presence of QRS resid-

uals do not prevent from analyzing AA, they still constrain

more detailed analysis of AF, as, e.g., when analyzing the

AA spectral content [7] or characterizing the AA wave-

form morphology [8] on a second-to-second scale. In these

cases, even a small improvement in the spectral content of

the remainder signal might produce better results for the

signal window under analysis. This is in line with the slight
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Figure 3. SC (solid line marked by dots) and percentage

of processed QRS segments (solid line marked by crosses)

evolutions vs. V RN index, for the real remainder ECG

dataset. Mean SC value for the original remainders is

57.44%.
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Figure 4. Real 4-s remainder ECG (dotted line) character-

ized by evident QRS residuals and its interpolated version

(solid line), using V RN = 0.3; a.u., arbitrary units.

improvement in the SC obtained for the real AF dataset,

suggesting that the overall features of the remainders have

not been changed significantly by the interpolation, but

they may have improved locally. Moreover, the agreement

between simulated and real datasets in the identification

of a threshold for the new QRS residual evaluation index

V RN , makes it reliable. In conclusion, the proposed al-

gorithm improves the spectral quality of the extracted AA

remainders without attenuating their mean amplitudes in-

side the QRS-T segments.
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