
Time-Varying Spectrum Estimation of Heart Rate Variability Signals

with Kalman Smoother Algorithm

M.P. Tarvainen*1, S. Georgiadis1, J.A. Lipponen1, M. Hakkarainen1 and P.A. Karjalainen1

1Department of Physics, University of Kuopio, Kuopio, Finland

Abstract— A time-varying parametric spectrum estimation
method for analyzing dynamics of heart rate variability (HRV)
signals is presented. In the method, HRV signal is first mod-
eled with a time-varying autoregressive model and the model
parameters are solved recursively with a Kalman smoother
algorithm. Time-varying spectrum estimates are then obtained
from the estimated model parameters. The obtained spectrum
can be further decomposed into separate components, which
is especially advantageous in HRV applications where low fre-
quency (LF) and high frequency (HF) components are generally
aimed to be distinguished. As case studies, the dynamics of HRV
signals recorded during 1) orthostatic test, 2) exercise test and
3) simulated driving task are analyzed.

I. INTRODUCTION

Heart rate variability (HRV) is a result of autonomic

nervous system and humoral effects on the sinus node. The

autonomic nervous system can be divided into parasympa-

thetic (also called vagal) and sympathetic branches. Roughly

speaking, sympathetic activity tends to increase heart rate

(HR↑) and parasympathetic tends to decrease it (HR↓) [1].

The most conspicuous periodic component of HRV is the

respiratory sinus arrhythmia (RSA) which is considered to

range from 0.15 to 0.4 Hz. This high frequency (HF) com-

ponent is generally believed to be mediated predominantly

by parasympathetic activity [1]. Another apparent component

of HRV is the low frequency (LF) component ranging from

0.04 to 0.15 Hz. The rhythms within the LF band are

nowadays generally thought of being both of sympathetic

and parasympathetic origin [1]. Thus, HRV is commonly

examined through spectral analysis and, e.g., the LF/HF

ratio is sometimes considered as an index of sympatho-vagal

balance.

Due to the complex control systems of HRV, it is presum-

able that the characteristics of HRV (e.g. the powers and fre-

quencies of LF and HF components) vary in time. Especially,

changes in physiological conditions may produce significant

variations. For example, in the orthostatic test, where subject

stands up after lying supine for few minutes, an increase in

HR compensates the decrease in blood pressure taking place

after standing up. On supine, the HF component of HRV is

typically strong, often stronger than the LF component. At

the instant of standing up, an immediate strong decrease in

HF component and a more gradual increase in LF component

has been observed [2]. In addition, HRV is known to be
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affected by both physical [3] and mental stress [4]. In order to

analyze such changes time-frequency methods are required.

In this paper, we present a Kalman smoother method

for estimating time-varying characteristics of HRV. In the

method, HRV signal is first modeled with a time-varying

autoregressive (AR) model. The parameters of the model

are estimated with a Kalman smoother algorithm. The time-

varying spectrum is then obtained from the estimated model

parameters. Furthermore, the obtained spectrum can be de-

composed into separate frequency components, and thus,

dynamics of LF and HF components can be analyzed without

applying any fixed frequency bands.

II. METHODS

The formulation of Kalman smoother algorithm is based

on a state-space formalism. Basically this means that we

have an observation model for the data (i.e. space equation)

and also a model for the evolution of the observation model

parameters (i.e. state equation). In the following, a short

description of the Kalman smoother spectrum estimation

approach is given (for details see [5]).

The HRV signal is first modeled with a time-varying AR

model of order p defined as

xt = −

p∑

j=1

a
(j)
t xt−j + et (1)

where xt is the modeled signal (i.e. RR interval series in this

case), a
(j)
t is the value of j’th AR parameter at time t and

et is observation error. By denoting

Ht = (xt−1, . . . , xt−p) (2)

θt = (−a
(1)
t , . . . ,−a

(p)
t )T (3)

the time-varying AR model can be written in the form

xt = Htθt + et (4)

which is a linear observation model. The evolution of the

state (i.e. AR parameters) is here modeled with a random

walk model

θt+1 = θt + wt (5)

where wt is a state noise term. Equations (4) and (5) form the

state-space signal model for the time-varying AR process x t

and the evolution of the AR parameters can now be estimated

by using the Kalman smoother algorithm.
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A. Kalman smoother algorithm

The Kalman smoother algorithm consists of a Kalman

filter algorithm and a fixed-interval smoother. The Kalman

filtering problem is to find the linear mean square estimator

θ̂t for state θt given observations x1, x2, . . . , xt. Kalman

filter equations can be summarized as

Cθ̃t|t−1
= Cθ̃t−1

+ Cwt−1
(6)

Kt = Cθ̃t|t−1
HT

t (HtCθ̃t|t−1
HT

t + Cet
)−1 (7)

θ̂t = θ̂t−1 + Kt(xt − Htθ̂t−1) (8)

Cθ̃t
= (I − KtHt)Cθ̃t|t−1

(9)

where θ̃t is the state estimation error θ̃t = θt − θ̂t, θ̃t|t−1

is the state prediction error θ̃t|t−1 = θt − θ̂t−1, Kt is the

Kalman gain vector, and Cet
and Cwt

are the observation

and state noise covariances, respectively.

The fixed-interval smoothing problem is to find estimates

θ̂ S
t (S denotes smoothed estimates) for each state θt given

all the observations x1, x2, . . . , xN . Fixed-interval smoothing

equations can be summarized as

θ̂ S
t = θ̂t + At(θ̂

S
t+1 − θ̂t) (10)

Cθ̃ S
t

= Cθ̃t
+ At(Cθ̃ S

t+1
− Cθ̃t+1|t

)AT
t (11)

where At = Cθ̃t
C−1

θ̃t+1|t
and filtered estimates are used for

initialization, i.e. θ̂ S
N = θ̂N and Cθ̃ S

N

= Cθ̃N
.

B. Adaptation of the algorithm

The terms effecting the adaptation of Kalman smoother

algorithm are the state and observation noise covariances Cwt

and Cet
= σ2

et
, respectively. The observation noise variance

can be estimated iteratively at every step of the Kalman filter

equations as

σ̂2
et

= 0.95 σ̂2
et−1

+ 0.05 ǫ2t (12)

where ǫt is the one step prediction error ǫt = xt − Htθ̂t−1.

Furthermore, the state noise covariance is selected to be

diagonal Cwt
= σ2

wt
I and σ2

wt
is adjusted at every step of

the Kalman filter equations as

σ̂2
wt

= UC σ̂2
et

/σ̂2
xt

(13)

where σ̂2
xt

is the estimated variance of the observed RR series

at time t and UC is an update coefficient through which the

adaptation of the algorithm can be adjusted.

C. Time-varying spectrum estimation

The time-varying spectrum estimate is obtained from the

time-varying AR parameter estimates â
(j)
t as

Pt(f) =
σ̂2

et
/fs

|1 +
∑p

j=1 â
(j)
t e−i2πjf/fs |2

(14)

where fs is the sampling frequency, â
(j)
t is the j’th AR

parameter estimate at time t, and σ̂2
et

is the posterior variance

of the observation error process (i.e. computed by using the

smoothed estimates).

D. Spectral decomposition

One property of AR spectrum estimation methods, that

is especially advantageous in HRV applications, is that the

spectrum can be divided into separate components as follows.

Equation (14) can also be written in the factored form

Pt(f) =
σ̂2

et
/fs

∏p
j=1(z − α

(j)
t )(1/z − α

(j)∗
t )

(15)

where z = ei2πf/fs , α
(j)
t are the time-varying roots of the

AR polynomial (also called poles), and ∗ denotes complex

conjugate. Now, consider a pole α
(j)
t positioned at frequency

fj . The spectrum of this single component in the vicinity of

fj can be estimated by assuming the effect of other poles on

the spectrum to be constant (for details see [5]). The powers

of the spectral components are finally estimated by simply

evaluating the areas of the components.

III. RESULTS

The Kalman smoother spectrum estimation method was

applied to three different case studies. Each case study and

the results obtained are presented shortly in the following.

A. Case study 1: orthostatic test

In the test, subject (a healthy young male) first lay supine

for over five minutes and then stood up. After standing

of about five minutes the subject held his breath for 30

seconds. The ECG signal was measured using a SynAmps2

Neuroscan system (Compumedics Limited). ECG electrodes

were placed according to the conventional 12 lead system

with the Mason-Likar modification. For analysis, the chest

lead V4 was chosen. The sampling rate of the ECG sig-

nal was 1000 Hz. The R-waves were then extracted from

the ECG signal by using a QRS detection algorithm and

the obtained RR interval series was interpolated with a 4

Hz cubic spline (in order to have evenly sampled signal).

Furthermore, the trend within the RR series was removed

by using a smoothness priors method [6]. The RR interval

series and the estimated trend are shown in Fig. 1 (a).

The Kalman smoother spectrum estimate was then cal-

culated (AR model order p = 16 and update coefficient

UC=1 · 10−5 were used in all case studies). Respiration rate

was estimated from the ECG (ECG derived respiration, EDR)

in order to guide the selection of the HF component within

spectral decomposition. The Kalman smoother spectrum with

the EDR curve and the HF and LF component spectra

are shown in Fig. 1 (b). Finally, HF and LF component

powers were evaluated through numerical integration. These

component powers and the LF/HF ratio are shown in Fig. 1

(c). The results show a decrease in HF power and an increase

in LF power after standing up, as was expected.

B. Case study 2: exercise test

The exercise ECG recording was performed by using

a Cardiovit CS-200 ergo-spirometer system (Schiller AG)

with Ergoline Ergoselect 200 K bicycle ergometer. ECG

electrodes were placed according to the conventional 12 lead
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Fig. 1. Case study 1: orthostatic test with 30 second breath hold. (a) RR
interval series (black line shows the removed trend), (b) Kalman smoother
spectrum and respiration rate estimate (top), HF (middle) and LF (bottom)
component spectra, and (c) LF and HF band powers and LF/HF ratio.

system with the Mason-Likar modification and for analysis

chest lead V4 was chosen. The sampling rate of the ECG was

500 Hz. In the stepwise test procedure, subject (a healthy

young male) first sat still on the bicycle for a while and then

subject started the actual exercise part in which the load of

the bicycle was increased with 40 W every three minutes.

Subject continued exercise until exhaustion, after which the

exercise test was stopped and a 10-minute recovery period

was measured. Similar preprocessing steps were performed

for the data as in the first case study (R-wave detection,

interpolation, and detrending). Obtained RR interval series

(with estimated trend) and the exercise protocol are shown

in Fig. 2 (a).

The Kalman smoother spectrum estimate was then cal-

culated similarly as for the first case study. The Kalman

smoother spectrum with the EDR curve and the HF and LF

component spectra for the exercise data are shown in Fig. 2

(b). Furthermore, HF and LF component powers and LF/HF

ratio are shown in Fig. 2 (c). Note that in this case, power

values are presented in decibels in order to have a general

view of HRV dynamics during exercise (including what

happens near peak exercise). The results show a prevalence

of HF component compared to LF component during heavy

exercise. Similar HF prevalence was reported in [3], where

mechanical effect of breathing rate to the sinus node was

concluded to be the most conceivable cause.
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Fig. 2. Case study 2: exercise test. (a) RR interval series (black line shows
the removed trend) and bicycle load during the exercise test protocol, (b)
Kalman smoother spectrum and respiration rate estimate (top), HF (middle)
and LF (bottom) component spectra, and (c) LF and HF band powers and
LF/HF ratio.

C. Case study 3: driving simulation

In the driving simulation, subject (a healthy young

male) performed a driving task consisting of three driv-

ing modes: slow→normal→fast→fast→normal→slow. Each

mode lasted 10 minutes, plus the time taken to finish the lap,
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and between the modes there was a 3-minute break. The driv-

ing simulator is based on standard consumer products (GTR2

PC game, Logitech MOMO steering wheel/pedals), but it

is set up inside a modern laboratory consisting of a sound

proof room (where the driver sits) and a separate control

room (where the test can be supervised). The ECG signal,

along with a set of other biosignals, was measured using a

ME6000 system (Mega Electronics Ltd). The sampling rate

of the ECG signal was 1000 Hz. Similar preprocessing steps

were performed for the data as in the previous case studies

(R-wave detection, interpolation, and detrending). Obtained

RR interval series and the driving task are shown in Fig. 3

(a).

The Kalman smoother spectrum with the EDR curve and

the HF and LF component spectra for the driving simulation

data are shown in Fig. 3 (b). Furthermore, HF and LF

component powers and LF/HF ratio are shown in Fig. 3 (c).

It is observed that the LF power is increased when chancing

from slow to normal, and from normal to fast driving mode.

In the HF power, on the other hand, an overall slight decrease

is observed. In addition, the 3-minute breaks between the

driving modes, where the subject sat tight and relaxed, seem

to produce slight decreases in both respiration rate and HR,

and also at some points slight increases in overall HRV (both

LF and HF powers increase). These results are in line with

the general knowledge that HRV decreases in tasks linked

with physical or mental loading.

IV. CONCLUSIONS

A Kalman smoother algorithm based time-varying spec-

trum estimation method was presented. Considering paramet-

ric spectrum estimation methods based on time-varying AR

model, the Kalman smoother is a statistically optimal method

for estimating the model parameters. Another advantage of

the Kalman smoother approach is that the spectrum can be

decomposed into separate frequency components, i.e. LF and

HF components of HRV can be separated. The method is

computationally demanding, but when tuned correctly it can

be easily applied to different data as demonstrated in this

paper.
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