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Abstract— It has been shown that a pedaling frequency
component can be extracted from the heart rate variability
(HRV) signal using a time-varying filter. It is shown that this
filter can be implemented directly in the time-frequency plane
with different approaches. The need of resampling the data is
also discussed with regard to the artifacts produced when the
shanon condition is not fulfilled. In order to interpret the similar
amplitude profiles of the pedaling component for untrained and
trained subjects, an attempt for the model parameters setting
is proposed. Consistent results on a large data set illustrate the
feasibility of such processing.

I. INTRODUCTION

In [1], it has been shown for the first time that during

cycling exercise the Very High Frequency band from the

Heart Rate Variability (HRV) corresponds to a pedalling

component. This observation has been recently confirm with

a larger set of subjects and for three different pedaling

frequencies [2]. A model has been proposed to explain how

and why departing from ideal experimental conditions, where

the right and left legs muscles contract in pure opposite

phase, the amplitude of the fundamental frequency could be

greater than its harmonics. In summary, it is explained by

the presence of asymmetry and delay between right and left

leg muscles contractions. Assuming that the HRV signal is

mechanically modulated by an oscillation in venous blood

flow during intense exercise it is expected to find a close

relationship between the pedaling frequency component and

the exercise workload (the higher the workload, the greater

is the muscle contraction contribution to venous return). This

hypothesis is not in accordance with our previous results [1]

which demonstrated no significant amplitude differences in

the pedaling frequency modulation between untrained sub-

jects and athletes, although the maximal workload achieved

during the test was significantly and substantially higher

in athletes. The aim of this paper is to fully explain how

the linear time-frequency representation that is the Short

Time Fourier Transform (STFT) is used not only to analyse

but also a to process the signal. In addition, a simulation

will show that changes in the parameters of the pedalling

model could explain our findings, providing a full simulation

framework where the modulation model is also accounted.

[3]. Finally, the processing of a large set of real data will

illustrate our findings.
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II. TIME-FREQUENCY ANALYSIS AND PROCESSING

Spectral analysis techniques, such as the Fourier transform

or autoregressive modeling, have been the most extensively

used methods to quantify HRV [4][5]. Although under sta-

tionary conditions the quantification of the spectral domain

is a simple task, during dynamic exercise condition, the

variation of the spectrum frequencies and of their relative

amplitude makes it more challenging. In [3], we showed that

using a time-varying approach, both time-varying frequen-

cies and amplitudes can be estimated from the R-R intervals

series recorded during maximal and graded exercise. In [7],

we used this signal processing method to demonstrate a

linear relationship between the amplitude of respiratory sinus

arrhythmia (RSA) component in HRV and ventilation during

intense exercise. In this study, the amplitude was measured

using a time-varying filtering. Among the available time-

frequency representation, one the main advantages of the

STFT is to be linear and thus to allow a direct implementa-

tion of a time-varying filter [3]. Although in this application

only the envelop is quantified, additional information can

also be obtained from the filtered signal. It is well known that

the STFT has a limited time-frequency resolution. However,

not only this resolution is sufficient in our application, but

also the STFT has the advantageous to be less sensitive to

interferences such as cross-term interference, that are known

to distort the analysis process [8]. If other time-varying

approaches, such as the Wavelet, are better adapted to signals

that contains transient events at different scales, the STFT is

fully adapted to time-varying spectral lines quantification [8].

From the ECG signal sampled at a 1000 Hz rate, the heart

period signal hp(k) was calculated as the difference hp(k) =
tk − tk−1 where tk is the occurrence time of the kth beat.

The signal hp(k) was separated in two components: the trend

po(k) and the variability m(k). This separation was obtained

by using a low-pass filter. We can get rid of the filter design

difficulty by computing directly from the short-time Fourier

transform (STFT) the quantity:

R(k) =

√

√

√

√

√

1

K

fobs(k)+δ
∑

f=fobs(k)−δ

|M(k, f)|2 (1)

with fobs(k) the time-varying frequency of interest. M(k, f)
is the STFT of the R-R intervals variability as defined in [3]:

M(k, f) =
∑

u

m(u)h(u − k)e−j2π ℓ

K
u (2)

with − K/2 ≤ ℓ ≤ K/2 − 1 integer and f = ℓ/K
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The analysis window h(u) was energy normalized. In our

application, aiming to quantify a pedaling frequency compo-

nent (PFC) in HRV, the value of the parameter δ was set ±
0.1Hz around the imposed pedaling frequency.

A time-varying filter design is required when one consider

the analysis of the filtered signal. Using the frequency

fobs(k) we define a binary template or filter G(k, f) in the

time-frequency plane such that:

G(k, f) =







1 for |f | ∈ [fobs(k) − δ; fobs(k) + δ]

0 for |f | /∈ [fobs(k) − δ; fobs(k) + δ]
(3)

The selectivity of the time-varying filter G(k, f) depends

on the value δ previously defined. The filtered signal x(k)
was then obtained using the Inverse Short Time Fourier

Transform applied on the modified M(k, f) such that:

x(k) =
1

K

∑

u

K/2−1
∑

ℓ=−K/2

G(u,
ℓ

K
)M(u,

ℓ

K
)h(k − u)ej2π ℓ

K
k

(4)

Note that the time-varying filter G(k, f) has to be designed

taking into account the negative frequency part. The filtered

signal x(k) being a narrow band signal, we used the Hilbert

transform in order to extract the envelope A(k) of the signal,

which is defined as the modulus of the analytical signal:

x̃(k) = x(k) + jH[x(k)] = A(k)ejϕ(k) (5)

where H[.] stands for the Hilbert transform.

Moreover, although the frequency of interest, i.e. the

pedaling frequency fp, was maintained constant in the

continuous time domain in our experimental setting, this

frequency became time-varying when extracted from in the

heart period signal such as:

fobs(k) = po(k)fp (6)

where po(k) is the trend (or instantaneous mean heart period)

of the heart period. In our previous studies, we used a

maximal and graded exercise test to evidence the pedaling

frequency modulation on cardiac activity. Because of the

workload increase, the quantity po(k) vary with time and

so forth for the observable pedaling frequency.

It should be mentioned that the shanon criteria apply for

this observation because the continuous pedaling signal is

sampled at the R-wave occurrence with a time-varying sam-

pling period (≈ po(k)). This criteria imposes the sampling

frequency (the inverse of the sampling period) to be twice

the maximum frequency fmax of the continuous observation.

If this condition is not fulfilled, the spectrum that lies in

the frequency band greater than half the sampling frequency

duplicates in a frequency band lower than half the sampling

frequency. This phenomenon can mislead the interpretation

and quantification of the spectrum. For instance, for a ped-

aling rate of 70 rpm the spectrum is free of aliasing when

po(k) (the mean heart period) is lower than 430 ms (heart

rate higher than ± 140 bpm). For a pedaling rate of 90

rpm, the limit is more drastic because po(k) has to be lower

than 330 ms (heart rate higher than ± 180 bpm). In case

of aliasing, the interpretation of results can be misled when

the duplicated pedaling frequency is superimposed to another

one, such as the RSA component.

This aliasing affect has also an impact on the resampling

of the variability signal (m(k)). In accordance with the

PFM model [3], an ECG signal has been synthesized with

a constant amplitude sinusoidal variability in the R waves

position with a frequency equal to 1.17Hz. This frequency

corresponds to a pedalling rate of 70rpm. After processing

this ECG, the computed hp(k) was filtered, providing the

variability signal m(k). In Fig. 1 and Fig. 2 the magnitudes

of the STFT are shown for the resampled and the unevenly

sampled m(k), respectively. The resampling technique was

based on a well-known spline interpolation at a sampling

frequency equal to 3Hz.
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Fig. 1. Amplitude of the STFT of the synthesized variability signal. The
signal has been resampled with spline functions at a frequency rate equal
to 3 Hz
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Fig. 2. Amplitude of the STFT of the synthesized variability signal. The
signal wasnt resampled but unevenly sampled

In these representations, because the frequency of the

modulation is constant, one could expect a straight line at

least for the resampled signal. This is because in the samples

6



interval [0-1200] of Fig. 1 the resampling was applied to

an aliased frequency. As well for Fig. 1, Fig. 2 doesn’t

exhibit straight lines because the constant frequency of the

modulation (i.e. the pedalling effect) is sampled with a time-

varying sampling frequency. In this figure, the intervals [0-

750] and [750-1800] corresponds to the aliased and non-

aliased frequency, respectively. Apart from the complex

description of the time-frequency content, it is noticeable that

the time-frequency representation of the resampled signal

exhibits artifacts around the index 1200. This shows that the

spline interpolation distort the frequency content, especially

close to half the sampling frequency. This remark led us to

use the unevenly signal for the processing and analysis of

the variability.

III. OBSERVATION MODELS

An important point is the significance of the estimated

amplitude (1). In the previous simulation, the PFM model

proposed in [3] has been used to generate the ECG. It

has been demonstrated that when the PFM model is used,

the estimated amplitude should be corrected by using the

formula:

c(k) = π
R(k)

po(k)sin(πfobs(k))
(7)

The results plotted in Fig. 3 illustrate the interest of such

correction. Because in the simulation the modulation had

a constant amplitude it is expected to retrieve from the

variability signal a constant magnitude. From Fig. 3 it is

clear that the observation model affects the estimated ampli-

tude (dashed line) and that assuming the appropriate model

selection and correction, the extracted amplitude can be

corrected (solid line). Note that the notch at the sample index

750 appears when the frequency cross half the normalized

frequency (0.5).
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Fig. 3. The quantity R(k) directly computed from the STFT of the
variability signal. The uncorrected (dashed line) and corrected (solid line)
were normalized for comparison purpose

In the next simulation, we compared the amplitude of the

fundamental frequency (proportional to the square root of the

power spectral density) with two different sets of parameters

corresponding to an athlete and an untrained subject. From

[1], the quantity of interest is:

Y = K

√

1 − 2α1cos(2πdr1/100) + α2
1

1 − 2α2cos(2πdr2/100) + α2
2

(8)

where K is the ratio of the amplitudes from the untrained and

athlete, α is the legs asymmetry coefficient, dr is the delay

normalized by the pedalling period (percentage) relative to

the opposite position of the two legs, subscripts 1 and 2
stands for the untrained subject and athlete respectively.

From (8), it is clear that comparing these subjects with two

different physical characteristics is difficult because of the

dynamic profile of the parameters involved in the pedaling

frequency modulation (see above). As previously mentioned,

we synthesized two ECG and generated two variability

signals for the athlete and untrained subject, respectively.

The corrected estimated amplitude (7), i.e. the amplitude of

the sum of the two legs contribution, during a simulated

graded exercise, is shown in figure 4 for both the virtual

athlete and untrained subject. The parameters used in this

stimulation were set to the following values: a random delay

with an increasing mean from 1 to 2 % of the pedalling

period (equal to 90 rpm), an asymmetry coefficient increasing

from 0.95 to 0.8, a linear increase of the effort magnitude,

for the athlete; a random delay with an increasing mean

from 1 to 5 % of the pedalling period (equal to 70 rpm),

an asymmetry coefficient increasing from 0.95 to 0.7, a

linear increase of the effort magnitude half the values of

the athlete, for the untrained subject. The influence of the

pedaling rate and the fatigue on the asymmetry coefficient

is discussed in [9]. The proposed variations are supposed to

account for the difference of pedaling rates and the duration

of the graded exercise. Note that a random variability has

been added in order to add some physiological fluctuation

into the observation.
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Fig. 4. The amplitude of the synthetic pedalling signal that mimic the
blood flow oscillation for the athlete (thick line) and the untrained subject
(thin line)

As it will be mentioned in the next section, all sub-

jects exhibited a continuously increasing estimated amplitude
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disregard their training conditions. In order to discard any

hypothetical bias due to the time-frequency processing, a

monte-carlo simulation has been conducted over 100 trials.

For each trial a noisy ECG has been synthesized without

pedalling interferences. The corresponding envelop has been

estimated supposing that a 90 rpm pedaling interference

is present. Applied to the HRV signal computed from the

synthesized ECG, one STFT result is given in fig. (5) where

the simulated respiration component is visible. In fig. (6),

the average of the 100 estimated envelops is shown where it

appears that the mean envelop is flat and not increasing. The

pic at time index 325 is due to the respiration component that

lies in the expected pedaling frequency bounds (see white

dashed lines in fig. (5) corresponding to the filter template).

This simulation confirms that the visible positive trend of the

pedaling envelop is not due to the estimation process.
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Fig. 5. Magnitude of the short time fourier transform of one realization
of the noisy respiration (pedalling signal not added)
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Fig. 6. Average of the estimated envelop of the pedalling signal from the
100 noisy respiration signals (pedalling signal not added)

IV. APPLICATION TO REAL DATA

To illustrate the use of such approach, 15 subjects with

different training level from sedentary to elite athletes have

been studied. This set has been clustered into three groups

of 5 subjects corresponding to three different pedaling fre-

quency: 70 (mostly sedentary), 80, 90 (mostly elite ath-

letes) revolutions per minute (rpm). Because the difference

between corrected and uncorrected was not significant, the

estimated amplitude was provided without correction (7),

allowing a measurement in millisecond. In order to avoid

the interference between the respiratory sinus arrhythmia

component and the pedaling component, results are display

from 55 to 100% of the maximal power output PMAX .

In Fig. 5 in [2], note that in all groups, the estimated

amplitude of the pedaling component continuously increased

with workload up to the maximal workload without any

significant differences between groups.

V. CONCLUSION

Heart rate variability is strongly linked in a complex way

to the activity of autonomous nervous system. In addition to

this neural modulation, mechanical events involving respira-

tion or locomotion (muscle pump) via oscillation in the ve-

nous return to the heart may also influence this variability. In

this study we focused our attention on the pedaling frequency

modulation. Because its contribution to the total variability

is not stationary, a time-varying approach was necessary to

quantify this modulation. In this work, we showed here that

the STFT can be used not only for the analysis process but

also for filtering the signal. Based on the ad-hoc setting of

the pedaling model parameters, we successfully used this

approach to extract the dynamic pattern of the pedaling

frequency modulation from simulated and real signals. Future

works will concern the design of experimental protocol to

check the accordance of the parameters value selection.
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