
 

  
Abstract— An algorithm to evaluate the sleep 

macrostructure based on heart rate fluctuations from ECG 
signal is presented. This algorithm is an attempt to evaluate the 
sleep quality out of sleep centers.  The algorithm is made up by 
a) a time-variant autoregressive model used as feature 
extractor and b) a hidden Markov model used as classifier. 
Characteristics coming from the joint probability of HRV 
features were used to fed the HMM. 17 full polysomnography 
recordings from healthy subjects were used in the current 
analysis.  When compared to Wake-NREM-REM given by 
experts, the automatic classifier achieved a total accuracy of 
78.21±6.44% and a kappa index of 0.41±.1085 using two 
features and a total accuracy of 79.43±8.83% and kappa index 
of 0.42±.1493 using three features.  

I. INTRODUCTION 

URING last years, the sleep evaluation has become  
an important issue due to a considerable number of 

pathologies linked to the sleep. The performance of basic 
activities in the normal life such as memorization, learning, 
productivity and concentration, are closely connected to a 
good sleep quality. Until a few years ago, the sleep 
evaluation was not possible out of sleep centers; this mainly 
occurs for technological limitations.  However, these 
limitations have been partially overcome with the 
introduction of new technologies that allow the acquisition 
of physiological signals with high precision in different 
environments. In addition to the sociological and 
physiological consequences produced by the low sleep 
quality, sleep evaluation is a time consuming task that has to 
be done by expert clinicians.  This evaluation consists in 
defining differents sleep stages through visual scoring of the 
polysomnography (PSG). PSG includes the recording of 
many signals such as electroencephalography, 
electromyography, respiration, electrooculagram, etc. These 
signals are recorded during a whole night in a specialized 
sleep center. With the PSG procedure it is possible to 
observe some sleep characteristics based on specific rules 
related to sleep quality [1] and sleep disorders [2]. Although, 
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the PSG is an accurate procedure, some inconveniences rise; 
for instance, we can cite the need of specific equipment, 
dedicated sleep centers and specialized and trained 
personnel. All these PSG characteristics have generated 
underestimation of the sleep pathologies and low 
accessibility to the general population. Then, the 
development of new automatic systems, for sleep screening, 
able to interact with the new acquisition technologies at 
home could be of great help. 
 Previous studies have shown that, during sleep the heart 
rate variability (HRV) presents characteristic oscillations 
connected to REM and NREM sleep stages [3-5], and with 
high discriminatory characteristics [6]. To evaluate the HRV 
characteristics linked to the sleep stages, it is necessary the 
selection of mathematical approaches suitable to deal with 
the nonstationarity and temporal information that HRV 
presents during sleep.  One of the most suitable approaches 
is the Time-Variant Autoregressive Model (TVAM). It has 
fine properties to deal with non-stationary time series [7]. 
TVAM presents a shift moving window across the data, 
which permits to TVAM to characterize a time series in a 
variant polynomial at each signal sample.  On the other 
hand, normal sleep presents a well-defined dynamic pattern 
into its macrostructure, which is characterized for the 
alternating between REM and NREM stages.  This 
characteristic can be well modeled by models that are able to 
recognize the dynamic of a pattern in the time. One of the 
most suitable is hidden Markov model (HMM), which uses 
the pattern temporality of a time series to define the most 
probable present state based on the previous ones [8].   
The goal of this study is to present a system that recognizes 
automatically Wake, REM and NREM during sleep time 
based only on heart rate fluctuations. The sleep stages are 
automatically detected using a time varying autoregressive 
model as feature extractor, and a hidden Markov model as 
probabilistic classifier.   

II. METHODOLOGY 

A. Protocol  
17 recordings coming from healthy subjects were used in 
this study. These were used to develop the classifier system 
based on standard ECG signal. Age of the subjects ranges 
between 40 and 50 years. Subjects have a body mass index 
less than 29 kg/m2. All subjects have an Apnea-Hypoapnea 
Index of zero and were drug-free. Each subject participated 
with one night recording. Mean sleep efficiency was 85%. 
All experiments were conducted at the sleep clinic of the 
San Raffaele Hospital. Sleep evaluation was done by expert 
personnel and assessed following the standard PSG 
procedure [1]. The acquisition system was a Heritage Digital 
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PSG Grass Telefactor and all data was acquired with 128 Hz 
as sampling rate. Polysomnographic data were scored in 
epochs of 30 seconds each. The hypnogram was obtained as 
a result of this procedure. Only hypnogram and the ECG 
signal were used for developing the classifier system. The 
ECG was extracted from the polysomnography data; R 
peaks were detected from the ECG using a derivative built 
and tested algorithm, and parabolic interpolation was added 
in order to overcome the low R peak accuracy due to the low 
sampling rate. Distances between consecutive R peaks were 
evaluated. This procedure gave as result the tachogram 
(RRI). Some R peaks were misdetected and some ectopic 
beats were found in the ECG. Then, ECG and RR series 
were plotted together in order to observe clearly the 
erroneous detections. Where a beat or a series of beats were 
misdetected, these were manually corrected and the new RR 
series recalculated. 

B. Feature extraction and classification procedure 
1)  Feature extractor algorithm: To deal with the 

different conditions that the RRI could presents across sleep 
stages, a TVAM was used.  This is suitable to analyze 
signals which change their statistical properties in the time. 
TVAMs extract the signal characteristics in their polynomial 
coefficients   which are self-adjusted beat-by-beat in relation 
to the prediction error. The prediction at each beat is 
obtained as follows: 
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where n denotes the time, ak are the coefficients of the 
model, P is the filter order (here eight) and  ŷ (n) denotes the 
prediction output. The prediction error is computed as: 
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The goal in adaptive models is to minimize this cost function 
at each time n: 
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where k is the observation interval and λ (here 0.98) is the 
forgetting factor. Recursive Least Square algorithm was 
used to update the filter parameters [7]. 

2)  Features: From the beat-by-beat filter coefficients the 
following spectral indexes were computed: 

• TP; Total Power (0.003–0.5 Hz). 
• LF; low‐frequency component (0.02–0.15 Hz). 
• HF; high‐frequency component (0.15–0.5 Hz). 
• pLF;  frequency  peak  to  the  maximum  power  in 

the low frequency band. 
• pHF;  frequency  peak  to  the  maximum  power  in 

the high frequency band. 
In addition to the classical spectral indexes, the modulus and 
phase of the representative pole in the high frequency band 
were extracted [9]. Spectral features were normalized with 
respect to the beat-by-beat total power for each recording. 
No normalization was applied to the pole features since 

these already ranged into the interval [0 1]. From the RRI, 
its mean value each 30 seconds was computed in order to 
have the same hypnogram resolution. The same procedure 
was carried out for all spectral indexes as well as for the 
phase and modulus of the high frequency pole.   

3)  Transformation and quantization: Since features did 
not present Gaussian distributions, a transformation 
procedure was applied. Logarithmic transformation was 
used for spectral features and square root for the modulus of 
the pole.   Discretization process, with M equal values (here 
M=10) ranging from the minimum to the maximum feature 
value, was applied to each feature in each recording.  

Joint probability distributions for each possible couple of 
features, from each recording, were computed.  From each 
joint probability distribution, a one-dimensional feature to 
feed the classifier was obtained. The one-dimensional 
sequences of symbols were obtained applying the following 
codebook: 

)(fM))(f()( 21 nnno +×=                 (4) 
Where o(n) is the observation to feed in the classifier,  

f1(n) and  f2(n)  are feature 1 and feature 2 of the joint 
probability distribution respectively and n is the epoch. 
Finally, M is the number of possible values, in the features, 
used in the discretization step. 

4) Classification Algorithm: hidden Markov models 
present high applicability in problems with an inherent 
temporality. In this case we want to recognize patterns in 
time such as the WAKE (w1), REM (w2) and NREM (w3) 
states. In Markov models the sequence generation is 
described by transition probabilities defined as: 

 a = (n)) w| 1)+(nP(w rqqr                                        (5) 

This means, that arq (element of the transition matrix) is 
the time-independent probability of having state wr at step 
time n+1 given the state wq at time n. This is a first order 
discrete time Markov model since particular state wr at time 
n+1 is a random function that depends only on the state at 
step n and on the transition probabilities. At any state (sleep 
stage) the system (central nervous system) emits observable 
symbols (autonomic nervous system signals) which are 
characteristics of the system state. In HMM this is described 
in the following way: in a particular state w there is a 
probability of emitting a particular observation ok (feature 
value), then P(ok|wr)=brk, where brk are called elements of 
the emission matrix. Such a model is called hidden Markov 
model [8] since we suppose to have only access to the 
observations and not to the wr states.  

C. Classification Performance 
The learning and performance procedure was carried out 
from the whole database using Leave-One-Out cross-
validation technique (LOOCV). Since a supervised learning 
was applied, the emission matrix was computed from the 
hypnograms and the emission matrix from the sequence of 
symbols. Thus the LOOCV procedure consists in: a) holding 
the symbol sequence (o) and the hypnogram of one 
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recording out, b) evaluating the emission matrix and 
transition matrix from the symbol sequences and 
hypnograms of the remaining recordings, c) decoding the 
symbol sequence of the recording that was left out and d) 
calculating the statistical classification measures of 
accuracy, sensitivity and specificity by comparing the 
hypnogram and the sequence of states obtained from the 
HMM decoding. Afterwards, again from the whole set 
another recording (never the same) was left out and the 
transition and emission matrices and the measures of 
classification where again evaluated. This procedure was 
repeated until each recording was left out once. Finally we 
obtain the mean performance for the 17 trials. The same 
procedure was also extended for joint probabilities 
composed of 3 features. The hypnograms were simplified in: 
1) Wake = Wake and stage 1, 2) NREM = stage 2, 3 and 4 
and 3) REM. The best performances were obtained with the 
following combination of features: 

• VLF - Modulus pole  
• VLF - Modulus pole - TP 

Sleep Efficiency was computed from the sequence of stages 
given by the HMM, defined as the number of epochs in 
REM-NREM divided by the total number of epochs. This 
procedure was done for symbol sequences coming from 
bivariate and trivariate joint probability distributions.  

III.  RESULTS 
Mean performances, of the automatic systems used to 
identify the sleep macrostructure from heart rate 
fluctuations, are presented in Table I. Bivariate and trivariate 
joint distributions showed accuracy close to 80%.  However, 
the agreement level is around 0.41 which means a moderate 
agreement. Mean sleep efficiency was similar to that given 
by the physicians with both the bivariate or trivariate joint 
distributions. Note that the percentage of wake and REM 
sleep epochs is similar.  
From the top to the bottom, Figure 1 shows the hypnogram, 
the sleep profile obtained with the bivariate probability 
distribution and the sleep profile obtained with the trivariate 
probability distribution. One can observe that the dynamic 
of the hypnogram is maintained by the sleep profiles 
obtained by HMM, independently if a bivariate or the 
trivariate probability distribution was used. One can also 
observe from Figure 1, that fast states transitions (i.e., when 
there is one wake epoch between two NREM epochs) were 
not detected by HMM. This is practically driven for the 
emission and transition matrix, and as a result we obtain a 
smoothed version of the hypnogram. 

 

 

IV.  DISCUSSION 

An automatic system that identifies the wake, NREM and 
REM sleep based only on HRV signal was presented. This 
system used as feature extractor a time-variant 
autoregressive model and as classifier a hidden Markov 
model. Our main claims are: 1) TVAMs seems to be fine 
tools to extract characteristics with high discriminatory 
power from the HRV signal to sleep staging. This allows the 
evaluation of the sleep macrostructure. 2) HMM presents 
interesting properties that allow to detect the sleep dynamic, 
3) Joint probability distributions seem to offer good 
discriminatory power for sleep staging. 
HRV presents slow and fast fluctuations during sleep. This 
variations produce non-stationarieties that sometimes forbid 
the application of fundamental techniques such as Fourier 
Transform. When we deal with this kind of situations, 
different techniques such as TVAMs offer a different 
perspective that allows the evaluation of signals even during 
non-stationary periods. However, even if the features 
obtained from TVAMs could represent the real dynamic of 
the time series, these features could not have high 
discriminatory power for classifying sleep stages. In a first 

 
Table I. Mean and standard deviation of accuracy and agreement measure for the sleep staging obtained by HMM. 

Heart Rate Fluctuations and Movements 

  ACC Kappa SeHMM SeHyp %Wake %REM %NREM 
Bivariate 78.21±6.44 0.41±.1085 79.96±14.33 81.86±11.25 18.14±11.25 14.78±5.16 67.09±7.85 
Trivariate 79.43±8.83 0.42±.1493 80.46±10.74 81.86±11.25 18.14±11.25 14.78±5.16 67.09±7.85 

ACC means general accuracy, kappa is kappa index, SeHMM is the sleep efficiency obtained by the automatic system, Sehyp 
represent the sleep efficiency obtained from the standard hypnogram. % Wake, %REM and %NREM are the percentage for wake, REM 

and NREM epochs found in all recordings.  

Figure 1. Hypnogram example of a single night. The top plot shows the 
hypnogram evaluated by an expert based on PSG but simplified to 3 
stages. Middle plot shows the sleep profile obtained from bivariate joint 
probability distributions and bottom panel illustrates the sleep profile 
obtained from trivariate joint probability distributions.  R is REM, N 
represents non-REM and W is wake
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tentative, we tried to separate Wake from REM by feeding 
single features to HMM. Unfortunately, only good 
separation between REM and NREM was possible [9]. In 
the current study, we combined the features by evaluating 
their join probability distribution (and after one dimensional 
code sequences was computed to fed mono-dimensional 
HMM), and from Table I one can observe that good results 
are obtained using a low dimensional feature space and a 
low computational cost is maintaining. These results are in 
line with the results presented in the current literature. 
Redmon et. al. [6] have presented an interesting algorithm to 
detect Wake-NREM-REM stages based on features 
extracted from HRV and respiratory surrogates. Their results 
were similar to the ones presented here.  
Although the results obtained by Redmon et. al. and those 
presented here seems motivating, both algorithms suffer of 
the same problematic. It is to say, that the separation 
between Wake and REM seems to be a challenging problem 
when HRV or any peripheral signal (based on heart 
fluctuations, respiration and vascular activity) is used. Only 
a moderate agreement is achieved due to difficulties in 
separating REM and wake. This is because the ECG 
presents similar characteristics during wake (in rest 
conditions) and REM. Redmon et. al. [6] had explored 
different characteristics from the ECC, different features 
extracted from the HRV signal and higher dimensional 
feature spaces, unfortunately from our results and those of 
Redmon et. al. [6], it seems that the HRV signal could be not 
enough to completely and accurately classify the sleep 
macrostructure. However, one can correlated the percentage 
of rapid and low EEG oscillation Wake-REM and NREM 
respectively, to the time in bed and sleep efficiency. In 
addition, the temporal dynamic of Wake-REM and NREM 
can give an idea of the sleep dynamic. On the other hand, 
probably this kind of system does not offer so accurate 
detection for sleep, but can be useful for a rough sleep 
screening in places out of the sleep center.  The drawbacks 
presented by HRV, when Wake and REM needs to be 
separated, motivate to a deep exploration of different signal 
processing techniques and a profound research of the 
characteristics in the ECG signal that could be useful to 
overcome this limitation. Detection of sleep macrostructure 
based on ECG is interesting since this signal presents 
advantages such as low noise/signal ratio and its acquisition 
is simple.  
On the other hand, since the proposed algorithms are based 
only on the heart rate fluctuations, signals that contain 
similar information could be used, as is the 
Ballistocardiogram case. One example, in which these types 
of algorithms could be applied, is on the bed mattress 
sensors such as the one proposed by [10].  They obtained the 
heart rate fluctuations based on multi-channel BCG signals 
measured by sensors placed in a bed. In addition, these heart 
rate fluctuations can also come from other type of signals, 
which are captured by other systems such as the 

photopletysmography. In the current study, we have applied 
HMM as classifier; however, it could be interesting to try 
other methods. This is because probably modeling the sleep 
dynamic (the a priori probability of the sleep stage) could be 
not so important to define the sleep stages when the decision 
is done from the feature characteristics. 

V.  CONCLUSION 

Heart rate fluctuations have valuable information of the 
sleep macrostructure. This information can be used to 
develop simple automatic systems and could give an index 
of sleep quality out of sleep centers. TVAMs seem to be 
useful to capture the time-variant characteristics of the 
autonomic nervous system, which are tie linked to the 
central nervous activity.  HMM offers interesting 
characteristics to evaluate the sleep macrostructure and 
define sleep stages based on the time series acquired from 
the peripheral signals. 
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