
  

  

Abstract—Perinatal hypoxia remains a significant cause of 
brain damage. Currently there are no biomarkers to detect the 
at risk brain. Recent research, however, suggests that the 
appearance of epileptiform transients in the first 6-8 hours 
after hypoxia (the latent phase of injury) are predictive of 
neural outcome. To quantify this further a key need is to 
automate EEG signal analysis to aid clinical staff with the vast 
amounts of complex data to review. In this study, we present a 
semi-automated method for spike detection in the fetal sheep 
EEG. The method utilizes the short time Fourier transform and 
peak separation to extract spikes. The performance of the 
method was found to be high in sensitivity and selectivity over 3 
distinct time points. 

I. INTRODUCTION 
YPOXIA before or during birth is a significant cause of 
brain damage [1]. Brain damage is an evolutionary 

process, allowing windows of opportunity for treatment. 
Neuroprotective treatments appear to be most effective if 
started in the latent phase of recovery: the first 6 to 8 hours 
after the end of the insult, with efficacy lost if started after 
this time [2], [3]. Birth itself cannot be taken as time zero, 
since the insult may have occurred well before birth. Thus, 
for treatments to be effective, it is critical to determine 
which phase of injury the brain is in. However, there are no 
specific biomarkers for evolving brain injury in the latent 
phase [4].  

Measurement of the electroencephalogram (EEG) has the 
potential to allow rapid bedside assessment of the brain, and 
features of the EEG such as amplitude suppression and high 
amplitude seizures can predict long-term injury [3]. 
However, these features are not predictive in the latent 
phase. Recent studies suggest that there are more subtle 
features of the EEG that may be pathological and potentially 
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predictive of outcome [5]-[8]. These features are defined as 
epileptiform transients. They are typically low amplitude, 
high frequency, <400 ms events defined as spikes, sharps 
and slow waves occurring singly or as complexes [9], [10].  

Increasingly, neonatal monitoring utilizes a reduced 2-4 
lead EEG configuration at 512 Hz [11]. However, such data 
collection leaves clinical staff vast amounts of complex data 
to review and quantify. The key need is to automate signal 
analysis to enable real-time use.  

The aim of this study was to develop a simple yet robust 
semi-automated spike detection algorithm which requires 
minimal assistance from a user, to accurately assess 3 
specific time points during the latent phase in a preterm fetal 
sheep model after asphyxia in utero. We report our 
preliminary findings in one sheep fetus. 

II. METHODS 

A. Data Acquisition 
All procedures were approved by the Animal Ethics 

Committee of the University of Auckland, New Zealand. A 
singleton Romney/Suffolk sheep fetus was instrumented 
under general anesthesia, using sterile techniques at 97-98 
days of gestation (term = 147 days [7]). A catheter was 
placed in the fetal brachial artery for blood sampling. Two 
pairs of electroencephalogram (EEG) electrodes (AS633-
7SSF, Cooner Wire Co., US) were placed on the dura over 
the parasagittal parietal cortex (5 mm and 10 mm anterior to 
bregma and 5 mm lateral) and secured with cyanoacrylate 
glue. A reference electrode was sewn over the occiput. An 
inflatable silicone occluder was also placed around the 
umbilical cord of the fetus (In Vivo Metric, US). The fetus 
was returned to the uterus and the ewe and fetus allowed to 
recover for 5 days. During recovery, the sheep was housed 
with companion sheep in separate metabolic cages and given 
free access to water and food. Antibiotics were administered 
daily intravenously to the ewe (600 mg Benzylpencillin 
Sodium; 80 mg Gentamicin). Fetal arterial blood was taken 
daily from the brachial artery for blood gas analysis for the 
assessment of fetal health.  

The experiment was conducted at 103 days of gestation 
(term is 147 days, ~ 27-30 weeks human brain maturation) 
[12].  Fetal asphyxia was induced by rapid inflation of the 
umbilical cord occluder for 25 min with isotonic saline of a 
defined volume known to completely inflate the occluder 
[7]. Successful occlusion was confirmed by fetal blood 
samples taken for pH and blood gases (Ciba-Corning 
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Diagnostics 845 Blood Gas Analyzer/Co-oximeter, US), and 
observation of a rapid flattening of the EEG.  

The signals from EEG electrodes were channeled via 
leads through individual unity-gain head-stages for reduction 
of noise by selective signal amplification (×10,000) and low-
pass filtered with a sixth order low-pass Butterworth anti-
aliasing filter, with the -3 decibel (dB) point set to a cut-off 
frequency of 50 Hz. The signals were then digitized by 
computer at a sampling rate of 512 Hz. Fetal EEG was then 
monitored for 8 hours after asphyxia. 

B. Epoch analysis 
For this analysis 3 specific time points during the latent 

phase where chosen to analyze spike activity: 0.5 hour (h), 
3.0 h, and 6.2 h after asphyxia. These time points were 
chosen to determine spike activity during 1) the early-latent 
recovery phase, during which time there is partial recovery 
of cerebral oxidative metabolism [4], 2) the mid-latent 
recovery phase, at which time we have previously seen 
maximal transient activity and the beginning of progressive 
metabolic deterioration [4]-[6], [13], and 3) the late-latent 
recovery phase , when transient activity decreases just prior 
to the onset of stereotypic evolving seizures and the 
transition of brain cells from being reversibly to irreversibly 
injured occurs [4]. 

C. Waveform analysis 
We identified all spikes in a 10 minute segment of the left 

EEG at the 3 specific time points during the latent phase. A 
spike was defined as having a sharp outline and duration of 
less than 70 ms with an amplitude greater than 20 µV, 
typically superimposed on a suppressed EEG background 
[10].  

D. Time-Frequency Analysis 
Time-frequency analysis [14] consists of a series of signal 

processing techniques that allow one to process non-
stationary signals whose constituent frequencies vary with 
time. Such techniques are an extension of Fourier analysis 
[14] where the signals are stationary and frequencies are 
assumed to be constant with time. Hence, time-frequency 
analysis lends itself naturally to real world signals such as 
biomedical signals like the EEG and ECG which are both 
time dependent and highly non-stationary. Several time 
domain [15]-[19] and frequency domain [20]-[22] spike 
detection methods have been presented in the literature for 
human EEG. In this paper, we perform semi-automated 
spike detection in the EEG of preterm fetal sheep.  

To perform the initial mass spike detection, we employ a 
time-frequency based method, by way of the discrete short-
time Fourier transform (STFT), 
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where X(m,k) is the observed spectral content for a discrete 
EEG signal x[n]at data index n, N is the data length, W[n-k] 

is the window function at position k and e-jnm/N  is a family of 
sinusoidal basis functions with m specifying the frequency 
of an individual sinusoid in the family. Once the times of the 
spikes have been located they are then further classified into 
single spikes, multiple-spikes and non-resolvable spikes by a 
series of simple time based measurements. Fig. 1, shows 
schematically the process of spike detection.  
 

 
Fig. 1.  Process of spike detection. 

 
Firstly, the STFT of the raw EEG data was produced. This 

employed a hamming window of length 18 and window 
overlap of 16 data points. The window was zero-padded to 
the next power of two then zero-padded to twice its resulting 
length, giving a frequency resolution of 0.67Hz. This was 
performed for 10 minute data segments at each of the 3 
specific time points during the latent recovery phase. 

For each time step in the STFT, the average power for 
frequencies greater than the minimum frequency of a spike 
wave was calculated and stored in an array. By way of the 
STFT, the user then defined a power threshold necessary to 
extract the high frequency peaks corresponding to spikes in 
the time domain, from the average power array. In order to 
extract the high power peaks, a window with length 
equivalent to that of a 70 ms spike was slid across the 
average power array. If the maximum of all data points 
within this window was greater than the power threshold, 
then the power value of the point in the middle of the sliding 
window was retained, otherwise it was set to zero. This 
method was used instead of a straight thresholding approach 
to ensure that the start and end of each peak was captured 
and not just the middle portion of the peak. 

On examination some multiple peaks were found that 
corresponded to two or more spikes that occur very closely 
in time. To separate these multiple peaks, the algorithm 
examined the gradients of the peaks. A window consisting of 
3 points was slid over the peaks detected after power 
thresholding. The minimum of the points in the window was 
examined. By tracing the minimum, an indication of whether 
the peak was increasing or decreasing in gradient was 
obtained. If the gradient decreased then increased before the 
end of the peak was reached, then that peak was termed a 
multiple peak. In order to separate the multiple peaks the 
minimum point indicating the overlap of the multiple peaks 
was set to zero (Fig. 2A and 2B).  

 
Fig. 2.  A: double peak; B: separated peaks; C: non-resolvable peak. 
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This method of peak separation worked well for multiple 
peaks where there were distinct peaks (Fig. 2A). However, 
in some cases, multiple spikes were so close in time that 
they could not be resolved. The only clue was that the signal 
had one main peak and one or more small auxiliary peak on 
the side, suggesting the signal contained multiple non-
resolvable spikes (Fig. 2C). 

In addition, such non-resolvable peaks had a slightly 
longer duration than the peaks containing a single spike. To 
deal with this special case, the start and end times of the 
peaks identified were recorded and used to calculate the 
average duration of the peaks. If the duration of a peak was 
greater than one and a half times the average duration, then 
it was plotted alongside its corresponding section of EEG in 
the time domain. The user was then asked to confirm how 
many spikes were contained within the peak. 

The peaks detected from the analysis were then compared 
with the peaks identified by the authors. As the peaks 
detected in the frequency domain were a lot wider than the 
corresponding spikes in the time domain, the end point of 
the peak detected in the frequency domain was compared 
with the start point of the spike in the time domain as they 
lined up most accurately. 

E. Performance Evaluation 
The performance of this algorithm was evaluated by 

quantifying the following parameters [23]: 
1) True positive (TP): the algorithm identifies a spike that 

has also been identified by the expert. 
2) False positive (FP): The algorithm identifies a spike 

that has not been identified by the expert. 
3) False negative (FN): The algorithm fails to detect a 

spike identified by the expert. 
 
Using the above parameters, the following performance 
measures of sensitivity (SEN), the ability of the algorithm to 
detect spikes (2), and selectivity (SEL), the ability of the 
algorithm to reject false detections of spikes (3) were 
calculated [23].  
 
 100)/( ×+= FNTPTPSEN  (2) 
 100)/( ×+= FNFPTPSEN  (3) 

III. ALGORITHM PERFORMANCE 
A typical section of EEG in the early-latent recovery phase 

is shown in Fig. 3A with spikes identified by the authors 
marked with an arrow. The STFT of this section of data is 
shown in Fig. 3B. As expected, the high frequency bands of 
high power in the STFT align with the high frequency spikes 
in the time domain. The peaks, as detected by the algorithm 
in the frequency domain, are shown Fig. 3C. Fig. 3D shows 
the peaks after the double peak has been separated 
automatically by the algorithm. Vertical lines correspond to 
the location of the spikes identified by the authors in the 
time domain. 

We identified 212, 88 and 74 spikes for the early-latent, 

mid-latent and late-latent recovery phases respectively. 
Table I shows the performance of the algorithm in terms of 
sensitivity and selectivity for increasing power thresholds. 
User assistance for detecting non-resolvable peaks was 
required for ~10% of peaks detected and increased 
sensitivity and selectivity on average by 6% and 1% 
respectively compared to the method without user 
assistance. 

 

 
Fig. 3.  A: Typical EEG segment with spikes identified by the authors 
marked with an arrow. B: STFT of the corresponding segment. Light bands 
represent high power. C: Peaks detected by the algorithm prior to separation 
of multiple peaks. D: Peaks after separation. Vertical lines correspond to the 
spikes identified by the authors. TAP=Thresholded average power. 
 

TABLE I 
PERFORMANCE RESULTS  

  Early-latent Mid-latent Late-Latent 

Power 
threshold SEN SEL SEN SEL SEN SEL 

5 85.4 73.6 94.3 81.3 81 58.3 
6 84.9 76.3 93.2 85.4 79.7 61.5 
7 82.1 78.4 89.8 88.8 78.4 71.6 
8 77.4 82.8 83 92.4 73 76.1 

Results show the sensitivity (SEN) and selectivity (SEL) of the method for 
increasing power thresholds.  

 
The results show that for an increase in power threshold 

the sensitivity of the algorithm decreased and the selectivity 
increased. This is due to lower thresholds allowing more 
peaks to be detected, therefore increasing the sensitivity but 
also increasing the number of false positives. Therefore, a 
balance between sensitivity and selectivity must be 
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achieved. We believe that the algorithm resulted in the best 
overall performance at a power threshold of 7. This gives a 
sensitivity and selectivity of 82.1% and 78.4% respectively 
for the early-latent recovery phase, 89.8% and 88.8% 
respectively for the mid-latent recovery phase and 78.4% 
and 71.6% respectively for the late-latent recovery phase. 

IV. DISCUSSION 
A method for semi-automated detection of spikes in a 

fetal sheep EEG has been presented and its sensitivity and 
selectivity compared at 3 specific time points during the 
latent phase of recovery (the period during which current 
neuroprotective treatments must be started for efficacy). The 
sensitivity and selectivity for this particular data set was 
highest during the mid-latent phase, and lowest during the 
late-latent phase. Lower performance results in the late-
latent phase are due to high frequency, low amplitude bursts 
occurring as the background EEG becomes less suppressed 
and increasingly unstable prior to the onset of high 
amplitude stereotypic evolving seizures [4]. The high 
frequency bursts appear as areas of high power in the STFT 
so increase the number of false positives.  

The method has proved to be simple and robust and 
requires ~10% intervention by a user to identify non-
resolvable multiple-spikes. It was noted that this method 
detects some spikes that have an amplitude less than the 
20μV threshold. This is due to the spikes still being high 
frequency so they appear as high power in the STFT. 

The method distinguishes between spike waves and sharp 
waves where the sharp wave is towards the longer end of its 
70-200 ms duration by definition. Our intentions are to 
extend the method to distinguish between spikes and sharp 
waves with durations towards the faster end of the 70-200 
ms duration, thus enhancing the utility of transient 
assessment in determining the phase of injury that the brain 
is in. Future work will also be focused on utilizing methods 
that allow flexibility in the time-frequency resolution. The 
algorithm will be tested and further refined in a large cohort 
of animals in the paradigm. Ultimately, it is our goal to 
develop a fully automated spike and sharp wave detection 
method and apply it to the human infant. 
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