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Abstract—This paper proposes a nonlinear analysis of the
human postural steadiness system. The analyzed signal is the
displacement of the centre of pressure (COP) collected from
a force plate used for measuring postural sway. Instead of
analyzing the classical nonlinear parameters on the whole
signal, the proposed method consists of analyzing the nonlinear
dynamics of the intrinsic mode functions (IMF) of the COP
signal. Based on the computation of the IMFs Lyapunov
exponents, it is shown that pre-processing the COP signal
with the Empirical Mode Decomposition allows an efficient
extraction of its chaotic component.

I. INTRODUCTION
Recently, extensive research has been devoted to the study

of postural steadiness. The attractiveness of this research field
is essentially due to the importance of characterizing the fall
risk and balance deficits among an elderly population. In fact,
elderly may suffer from autonomy and independence loss
after falling. In addition, for psychological reasons, fall risk
increases after the first fall, leading to a severe deterioration
of both the mental and physical health of the subject. Conse-
quently, falls of the elderly is one of the main causes of death.
Many scientific studies have attempted to identify the risk
factors [1]. There are several clinical tests such as the Timed
Get-up-and-go [2], the Berg Balance Scale [3] and the Tinetti
Balance Scale [4] that can predict the risk of falling. The
major drawback of these tests is the fact that they are not able
to capture the time evolution of this risk and do not allow
a daily evaluation of the balance status. Biomechanical tests
of balance, however, circumvent these problems offering the
possibility of predicting falls by extracting several parameters
from the displacement of the centre of pressure. In fact,
postural stability can be measured using a force plate, from
which measures of centre of pressure (COP) displacement in
anteroposterior (AP), mediolateral (ML), and resultant (RD)
directions are obtained. The representation of the time series
data of COP in AP and ML directions is known as the
stabilogram. More recently, nonlinear methods have been
proposed in order to extract new parameters linked to the
underlying physiological systems. Among these parameters,
the Hurst exponent provides information about the corre-
lation and the auto similarity of the stabilogram [5], [6],
while the Lyapunov exponent [7] and entropy [8] might also
contain precious information about the static equilibrium of
the subject.

In this paper, a different approach is proposed to analyze
the stabilogram signal. The ML and AP time series are
obviously non stationary and governed by nonlinear dynam-
ics. Therefore, classical spectral signal decomposition fails
to capture the nonlinear dynamics of the postural system.
The proposed approach is based on applying the empirical
mode decomposition (EMD) [9], which extracts the local
oscillations composing the signal, referred to as the Intrinsic
Mode Functions (IMF), as well as the residual representing
the local trends. Estimation of the IMFs Lyapunov exponents
makes evident the ability of the EMD decomposition to
properly extract the chaotic component from the stabilogram
signal contaminated by stochastic and deterministic quasi-
periodic signals, confirming the conjecture made in our
previous work [10].

II. METHODS
A. Subjects
Ten healthy control subjects (three males and seven fe-

males), ten healthy elderly subjects (four males and six
females) and one healthy faller elderly subject participated
in the study. Control subjects’ mean age, height and weight
were 33.3±7.4y, 168.0±6.5cm, and 65.7±17.6kg, respec-
tively. Elderly subjects’ mean age, height and weight were
80.5± 4.7y, 165.6± 7.0cm, and 71.9± 9.9kg, respectively.
The faller subject had fallen twice in the previous 2 years
(age 75 y). All subjects who participated gave their written
informed consent. No subjects reported any musculoskeletal
or neurological conditions that precluded their participation
in the study.

B. Data Acquisition and Data Processing
Centre of pressure data were obtained from a Bertec 4060-

08 force plate (Bertec Corporation, Columbus, OH, USA).
The initial COP signals were calculated with respect to the
centre of the force-plate before normalisation by subtraction
of the mean value. Data were recorded using ProTags (Jean-
Yves Hogrel, Institut de Myologie, Paris, France), which was
developed in Labview (National Instruments Corporation,
Austin TX, USA). Data were sampled at 100 Hz, using an
8th-order low-pass Butterworth filter with a cut-off frequency
of 10Hz. All subsequent calculations were performed using
Matlab (Mathworks Inc, Natick, MA, USA).
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C. Experimental Protocol

Subjects were tested barefoot or wearing socks. Testing
began with subjects standing upright with their arms by
their sides in front of the force-plate while looking at a 10-
cm cross fixed on the wall two meters in front of them.
Upon verbal instruction, subjects stepped onto the force
plate. Subjects were not required to use a pre-ordained foot
position. Data recording lasted 15 seconds, during which
time subjects maintained an upright posture. A second verbal
command was given for subjects to step down from the force-
plate.

D. Data analysis

Centre of pressure data were calculated from the instant
that the second foot contacted the force plate (FC2). The time
at which FC2 was considered to occur was calculated as the
time at which the maximum value of the second derivative
of the ML displacement signal occurred. This instant in time
corresponded to the moment when the second foot touched
the force plate, thus creating the largest acceleration of ML
when the COP moved rapidly towards the second foot. This
time was used for both AP and ML displacements. All
analyses were done for the 10 s period starting 1 s after
FC2, in order to give both AP and ML displacement time to
return to near central values.

E. Empirical Mode Decomposition

The empirical mode decomposition is an intuitive signal-
dependent decomposition of a time series into waveforms
modulated in amplitude and frequency [9]. The iterative
extraction of these components is based on the local repre-
sentation of the signal as the sum of a local oscillating com-
ponent and a local trend. The first iteration of the algorithm
consists in extracting a component, referred to as the Intrinsic
Mode Function (IMF), representing the oscillations of the
entire signal. The difference between the original signal and
the IMF time series is the residual. The IMF component
is obtained by a sifting process such that it satisfies the
requirement that it is zero-mean and that the number of
extrema and the number of zero crossings are identical or
differ by one. This same procedure is then applied on the
residual to extract the second IMF. All the IMFs are therefore
iteratively extracted. The nonstationary signal x(t) is then
represented as a sum of Intrinsic Mode Functions and the
residual component:

x(t) =
K∑

k=1

dk(t) + rK(t) (1)

where {dk(t)}K
k=1 denote the K extracted empirical modes

and rK(t) the residual which is a monotonic function without
extrema.
The EMD algorithm1 can be summarized as follows:

1Matlab codes are available at :
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
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1. Extract all the extrema of x(t)
2. Interpolate between minima (resp. maxima)

to obtain two envelopes emin(t) and emax(t)
3. Compute the average:

m(t) = (emin(t) + emax(t))/2
4. Extract the detail d(t) = x(t) −m(t)
5. Iterate on the residual m(t)

In Figure 1, the intrinsic mode functions of a 10 s
recording of the anteroposterior displacement of a healthy
subject are shown.�
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Fig. 1. EMD decomposition of a 10-s recording of the anteroposterior
signal of a healthy young subject (age 19 y).

F. Lyapunov Exponents of Intrinsic Mode Functions
It was conjectured in [10] that the empirical mode de-

composition allows the separation of the stochastic, chaotic
and deterministic components composing the original sta-
bilogram signal, based on a visual inspection on all the
stabilogram signals in our data base. In this work, we resort
to a quantative criteria to prove the ability of the EMD
decomposition to properly extract the chaotic component
from the remaining stochastic and deterministic components.
The Largest Lyapunov Exponent (LLE) is a well defined
tool to characterize the chaotic behavior of a given signal.
In the following, we briefly recall the LLE definition and the
numerical algorithm for its evaluation.
The Lyapunov exponent is a nonlinear parameter measur-

ing the rate of loss of information from a chaotic time series.
It characterizes the sensitivity to initial conditions, which
one of the main features of chaotic dynamical systems. In
fact, a chaotic signal is very sensitive to the initial condition
so that two trajectories, governed by the same deterministic
time evolution equations and starting from two nearby initial
states, diverge at an exponential rate. The Largest Lyapunov
Exponent is indeed a measure of this rate, defined by the
following expression:

λ = lim
Δt−→∞

(1/Δt) log{‖δx(Δt)‖/‖δx(0)‖},

where δx(0) is an infinitesimal initial state difference and
δx(Δt) is the difference between the two trajectories at a
later time. A positive value of λ indicates the presence of
a deterministic chaos in the system dynamics, a negative
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value suggests the existence of a stable fixed point and a
zero value is found when the trajectory converges to a limit
cycle. Although its definition is simple and intuitive, the
computation of LLE in practical situations requires much
care. An efficient numerical algorithm, robust to noise and
to the limited data samples, has been proposed in [11]
and in [12]. It consists in computing averaged divergences
over different reference points xn0

, for a given embedding
dimension m and a neighborhood volume ε:

Dm,ε(Δt) =
1

N

N∑

n0

ln
1

|U(xn0
)|

∑

xn∈U(xn0
)

|xn0+Δt−xn+Δt|

(2)
where U(xn0

) is the neighborhood of xn0
with diameter ε.

Expression (2) yields a family of curves indexed by two
parametersm and ε. In general, ε is fixed as small as possible
but large enough in order to ensure a minimum of neighbors
around the reference point xn0

. However, the embedding
dimension must be varied in order to check if the curves
have a stable linear increase for a certain range of Δt.
If the slope remains stable after a certain value of m (in
general the Takens dimension), it yields an estimate of the
largest Lyapunov exponent. Otherwise, if the curves (2) do
not exhibit a linear behavior, it is difficult to evaluate the
chaotic behavior of the signal and even misleading to apply
a linear regression on the curves to calculate a value of the
Lyapunov exponent.

III. RESULTS

Figure 2 shows the computed log-divergences Dm,ε(Δt)
for a filtered stabilogram signal in the AP direction and for its
Intrinsic Mode Functions, for a control healthy subject. The
embedding dimensionm is ranging between 2 and 20 with an
increment of 2. It can be noted that AP signal has linear log-
divergence curves, for a long region. The small positive slope
of the log-divergence curves suggests the existence of a low-
level deterministic chaos in the stabilogram signal. However,
plotting the log-divergence curves of the intrinsic mode
functions confirms the ability of the EMD decomposition
to separate the stochastic, the chaotic and the deterministic
periodic components of the stabilogram signal. In fact, the
log-divergence plots of the first and second IMFs are typical
plots for a random noise (see figure 2), where it is difficult
and misleading to estimate the Lyapunov exponent as no long
enough linear region exist. However, the third IMF exhibits
a long enough linear region with a slope equal to 0.26. The
remaining IMFs have low Lyapunov exponents proving their
quasi-periodic motions. The most interesting result is the fact
that the Lyapunov exponent of the third IMF is higher than
that of the whole AP signal. Decomposing the AP signal
with the EMD method allows thus the extraction of the
chaotic component (third IMF) and a better estimation of
the Lyapunov exponent. In fact, the non-chaotic components
contaminating the whole stabilogram signal are the main
origin of the poor estimation of the Lyapunov exponent.

IV. CONCLUSION
The nonlinear time series analysis of the intrinsic mode

functions is a novel interesting tool to understand the
empirical mode decomposition. Based on experiments on
stabilogram signals, we have shown the ability of the em-
pirical mode decomposition to properly extract the chaotic
component. Motivated by these promising results, the next
step is a more extensive statistical study of the this finding.
An experimental protocol, consisting in providing elderly
people with stabilogram measuring system at home, has been
recently deployed. By this protocol, we aim to build the first
consistent database for the postural analysis and the risk of
falling. Also, finding a global indicator allowing to follow
the evolution of the postural steadiness status is among our
perspectives.
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Fig. 2. Log-Divergence curves of a healthy control subject for the AP direction and all its IMFs.
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