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Abstract— We propose using a state-space model to estimate
cortical connectivity from scalp-based EEG recordings. A state
equation describes the dynamics of the cortical signals and an
observation equation describes the manner in which the cortical
signals contribute to the scalp measurements. The state equation
is based on a multivariate autoregressive (MVAR) process model
for the cortical signals. The observation equation describes
the physics relating the cortical signals to the scalp EEG
measurements and spatially correlated observation noise. An
expectation-maximization (EM) algorithm is employed to obtain
maximum-likelihood estimates of the MVAR model parameters.
The strength of influence between cortical regions is then
derived from the MVAR model parameters. Simulation results
show that this integrated approach performs significantly better
than the two-step approach in which the cortical signals are first
estimated from the EEG measurements by attempting to solve
the EEG inverse problem and second, an MVAR model is fit to
the estimated signals. The method is also applied to data from
a subject watching a movie, and confirms that feedforward
connections between visual and parietal cortex are generally
stronger than feedback connections.

I. INTRODUCTION

Multivariate autoregressive (MVAR) models have been

successfully used for studying causal relationships between

various cortical regions using invasive recordings [1]-[3].

They have also been used to model topographic interac-

tions between signals at different scalp EEG measurement

locations [4]-[5]. Different metrics of connectivity between

regions may be obtained from the MVAR model parameters,

e.g., [6]-[7].

Identifying cortical MVAR models from scalp EEG data

is a challenging problem because the cortical signals are not

directly observed. The conventional approach to this problem

proceeds in two stages: first cortical signals are estimated

by solving the ill-conditioned inverse problem, and then a

MVAR model is fit to the estimated signals. For example, Hui

and Leahy [8] use linearly constrained minimum variance

beamforming to estimate the cortical signal associated with

multiple regions of interest (ROIs) from the measured data.

Next the MVAR model parameters are estimated by solving

the Yule-Walker equations formed from the estimated cortical

signals. Astolfi, et al. [7] take a similar approach in which a

minimum-norm inverse method is used to first estimate the
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cortical signals. Another two-step method is described in [9].

Two-step approaches work well at high signal to noise ratio

(SNR). However, the effect of noise on the solution of the

inverse problem can cause significant errors in the MVAR

model parameter estimates at the SNRs typical of EEG data.

In this paper we take an integrated approach for estimating

cortical MVAR models from scalp EEG measurements using

a state-space formulation of the problem. This formulation

leads to maximum-likelihood (ML) estimates of the MVAR

model parameters and results in significant performance

improvement relative to two-step approaches at low SNR.

The MVAR model between cortical regions is described

using a “hidden” state equation. An observation equation

uses EEG physics to relate the hidden cortical signals to

the measured data and models spatially correlated noise

unrelated to the MVAR model. The MVAR model parameters

are estimated directly from the observed EEG measure-

ments using a variation of the expectation-maximization

(EM) algorithm proposed by Shumway and Stoffer [10].

Our observation equation includes unknown parameters that

model the unknown spatial distribution of the cortical signal

within each ROI.

The paper is organized as follows: Section II introduces

the state-space formulation for the MVAR model and a

cortical patch basis [11] representation for the observation

equation. Cortical patch bases describe uncertainty in the

spatial distribution of the signal within each ROI. The EM

algorithm for estimating the MVAR model parameters is also

summarized in Section II. Section III presents a simulation-

based example that illustrates the benefits of the state-

space formulation. Section IV reports the application of the

state-space approach to EEG data collected from a subject

watching a movie and verifies that feedforward connections

between the inferior occipital gyrus and the superior parietal

lobule are stronger than backward connections. We conclude

in Section V.

II. STATE-SPACE MVAR MODEL FOR EEG

Let yj
n and xj

n be the jth epoch of the L × 1 EEG

measurements at L electrodes and the M × 1 state vector,

respectively, at time n. The elements of the state vector xj
n

are the cortical signals associated with the ROIs in the MVAR

model and may represent dipoles, multipoles, or cortical

patches. We assume that yj
n, n = 1, 2, . . . , N, j = 1, 2, . . . , J

are generated by the linear time-invariant state-space system
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xj
n =

p
∑

r=1

Arx
j
n−r + wj

n

yj
n = Cxj

n + vj
n (1)

where A1,A2, . . . ,Ap are the M × M matrices of MVAR

model coefficients, p is the model order, C is the L × M
observation matrix, and wj

n and vj
n are the jth epoch of

M × 1 state noise vector and L× 1 observation noise vector

respectively. The M columns of the observation matrix C

consist of the forward solutions that map the cortical signals

to the EEG measurements.

The spatial distribution of the cortical signal within each

ROI is assumed unknown, so C contains unknown param-

eters. We write each column of C as a linear combination

of known basis vectors associated with the corresponding

ROI and assume the coefficients are unknown. That is, we

write the ith column of C as [C]i = Hiφi where Hi is

a known L × Q matrix whose columns are a set of basis

vectors defining the space spanned by contributions from

the ith cortical ROI and φi is a Q × 1 unknown vector of

the corresponding basis coefficients. The unknown spatial

attributes associated with the ith ROI, i.e., the ith entry

in xj
n, are represented by φi. The forward model Hiφi is

able to represent several different classes of source activity

distributions. If an equivalent current dipole is employed,

then Q = 3 and the columns of Hi represent the forward

model for the 3 components of the moment and φi represents

the unknown dipole moment. If an extended source represen-

tation is desired, then the columns of Hi can be chosen as

either multipole or cortical patch bases and φi represents the

corresponding unknown coefficients.

The state noise wj
n and observation noise vj

n are assumed

to be zero-mean Gaussian vectors with unknown covari-

ance matrices E[wj
nwiT

m ] = Qδn,mδj,i and E[vj
nviT

m ] =
Rδn,mδj,i. The M ×1 initial state vector x

j
0

is also assumed

to be Gaussian distributed with unknown mean vector µ0

and covariance matrix Σ0.

The EM algorithm of Shumway and Stoffer [10] is ex-

tended to compute the ML estimates of the unknown model

parameters A,Q,R, µ0,Σ0 and φi. The ML estimates of

A,Q,R, µ0,Σ0 are given in our previous work [12]. The

ML estimate of φi at iteration r in the M-step of the EM

algorithm satisfies the following equation:

φr
i =

(

HT
i R−1Hi

)−1

HT
i R−1

×





J
∑

j=1

N
∑

n=1

yj
nE[xj

i,n|Y
J
N , θr]

−
M
∑

k=1,k 6=i

Hkφk

J
∑

j=1

N
∑

n=1

E[(xj
k,n)2|YJ

N , θr]





×





J
∑

j=1

N
∑

n=1

E[(xj
i,n)2|YJ

N , θr]





−1

(2)

where YJ
N = {y1

1
, . . . ,y1

N , . . . ,yJ
1
, . . . ,yJ

N} is the matrix of

observed data, R is the current estimate of the noise covari-

ance matrix, x
j
i,n denotes the ith element of xj

n, and θr are

the ML estimates of the other model parameters at iteration

r. The statistics E[xj
i,n|Y

J
N , θr] and E[(xj

i,n)2|YJ
N ,θr] are

computed from the fixed interval smoother [13] implemented

in the expectation step of the EM algorithm. Algebraic

manipulation of (2) can be used to obtain an equation that

solves for all φr
i , i = 1, . . . ,M simultaneously. We refer

to the approach described in this section as the MLEM

algorithm.

III. SIMULATION EXAMPLE

A simulation scenario is used to illustrate the performance

advantages of the MLEM algorithm relative to a two-step

approach. The simulation scenario is inspired by the at-

tributes of the real data study presented in the next section.

In particular, we simulate cortical activity from the inferior

occipital gyrus (IOG) and the superior parietal lobule (SPL)

in each hemisphere. A patch of 10 mm geodesic radius at

the center of IOGs and SPLs is defined as the ROI as shown

in Fig. 1. Fig. 1 also illustrates the assumed connectivity

model used in the simulation. Feedforward connections are

dominant and feedback connections are absent. We assumed

the state noise variances are the same in all four ROIs. We

simulated L = 56, N = 1000 and J = 1. We choose the

number of patch basis vectors [11] for each ROI as Q = 3
and the model order p as 1, and generated spatially white

(R = σ2I) observation noise.

Fig. 1. Locations (in blue) of IOG (region 2 and 4) and SPL (region 1
and 3) and simulated connectivity model. View is from the back.

A two-step approach is implemented based on a least-

squares beamformer estimate of the cortical signals. The

estimate of x
j
i,n is given by

x̂
j
i,n = φ0

T

i WT
i yj

n (3)

where φ0

i is the eigenvector of WT
i SWi corresponding to

the maximum eigenvalue, S is the sample covariance matrix

of the measured data, Wi contains columns (i − 1)Q + 1
to iQ of W = H(HT H)−1 and H = [H1H2 . . .HM ].
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It can be shown that Wi is orthogonal to Hk for k 6= i
and WT

i Hi = IQ, so there is no cross-contamination of

cortical sources. That is, x̂
j
i,n contains no contributions due

to x
j
k,n, k 6= i. In the absence of observation noise this

least squares beamformer approach perfectly estimates the

cortical signals. This beamformer is also equivalent to that

of [8] if the observation noise covariance matrix is assumed

known. The Yule-Walker equations are then used to obtain

the MVAR model parameters from the estimated cortical

signals.

Fig. 2 depicts the 16 true and estimated entries of A1

for 200 independent simulation runs of both the MLEM

algorithm and the two-step approach. The SNR, defined as

tr{
∑J

j=1

∑N

n=1
(Cxj

n)(Cxj
n)T }/tr{

∑J

j=1

∑N

n=1
(vj

n)(vj
n)T },

is set to 0 dB. The estimates from the MLEM algorithm

are closer to the true values than those from the two-step

approach. The true values are within one standard deviation

of the mean of the MLEM estimates in every cases,

while the two-step method significantly underestimates

A11

1
,A12

1
,A14

1
,A22

1
and A44

1
while overestimating A13

1
,A23

1

and A24

1
. Here Akl

1
denotes the (l, k)th element of A1.

These errors are a consequence of the observation noise and

increase as the SNR decreases.
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Fig. 2. Mean and standard deviation for the 16 estimated entries in A1

at SNR of 0 dB calculated over 200 independent simulations. MLEM: red
circle, Two-step: blue square, True: black asterisk.

Note that since p = 1 in this example, Akl
1

represents the

strength of the connection from ROI l to ROI k. In cases

where p > 1 it is common to use other metrics to measure

the strength of influence between ROIs. In this paper we

consider the impulse response from one ROI to another and

measure the strength of the connection based on the energy

of the impulse response. The M × M impulse response

matrix between all ROIs at time i, Ψi, is calculated from the

estimated MVAR parameter matrices A1, . . . ,Ap as follows

[14]:

Ψi =
i

∑

j=1

Ψi−jAj i = 1, 2, . . . (4)

where Ψ0 = IM and Aj = 0 for j > p.

Fig. 3 depicts the mean and standard deviation of the

estimated impulse response energy between each pair of

ROIs over 200 independent simulation runs. The improved

quality estimates of A1 obtained with the MLEM algorithm

lead to more accurate estimates of the impulse response

energy. In particular, the two-step approach significantly

underestimates the influence of ROI 2 on ROI 1 and of ROI

2 on ROI 3.
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Fig. 3. Mean and standard deviation of the estimated impulse response
energy at SNR of 0 dB calculated over 200 independent simulations.
MLEM: red circle, Two-step: blue square, True: black asterisk.

IV. APPLICATION TO REAL EEG DATA

Data was derived from high-density EEG (256 channel)

recordings of a healthy subject passively watching a segment

of an engrossing movie (The Good, The Bad, and The Ugly).

The data were sampled at 1000 Hz and hardware filtered (0.1

Hz - 400 Hz). The data was preprocessed using a low pass

Chebyshev Type II filter with 30 Hz cutoff frequency and

down sampled to a 62.5 Hz sampling rate. Three artifact

free segments of 9.6 sec were selected for processing. Each

segment is considered as an epoch in (1). The temporal mean

of each trial is subtracted from the data to remove DC offsets.

Each of the four ROIs are modeled using three patch bases

and an MVAR model of order p = 4 is estimated using the

EM algorithm.

Fig. 4 depicts the energy of the impulse response between

different connections. “Forward” denotes directed connec-

tions from an IOG to an SPL ROI, while “backward” denotes

directed connections from an SPL to an IOG ROI. The

rightmost set of bars represents the effective forward and

backward connectivity calculated as the sum of the impulse

response energies across all four connections. The results

suggest that feedforward information flow dominates feed-

back information flow within each hemisphere and across

the entire system. This is consistent with the fact that the

IOG is a primary sensory area while the SPL is involved in
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sensory integration and higher order information processing

[15] [16].

Fig. 4. Impulse Response Energy derived from MLEM estimated MVAR
model for a subject passively watching a movie. IOG → SPL: green solid,
SPL → IOG: blue stripe.

V. CONCLUSION

We have formulated the problem of estimating cortical

connectivity from the scalp EEG measurements as a state-

space model and applied the EM algorithm to estimate the

model parameters. A patch basis model is used to describe

the unknown source activity distribution within each ROI,

and the ML estimates of the basis coefficients for each ROI

are obtained via the EM algorithm. We demonstrate through

simulation that using the state-space model with an EM

algorithm gives improved quality MVAR parameter estimates

compared to a two-step approach based on beamforming

to estimate cortical signals. The result of applying the EM

approach to data from a subject watching a movie confirms

the dominance of feedforward information flow.
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