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Abstract— The synchronous brain activity measured via
magnetoencephalography (MEG) arises from current dipoles
located throughout the cortex. Estimating the number, location,
time-course, and orientation of these dipoles, called sources,
remains a challenging task, one that is significantly compounded
by the effects of source correlations and interference from
spontaneous brain activity and sensor noise. Likewise, assessing
the interactions between the individual sources, known as func-
tional connectivity, is also confounded by noise and correlations
in the sensor recordings. Computational complexity has been
an obstacle to computing functional connectivity. This paper
demonstrates the application of an empirical Bayesian method
to perform source localization with MEG data in order to
estimate measures of functional connectivity. We demonstrate
that brain source activity inferred from this algorithm is better
suited to uncover the interactions between brain areas as com-
pared to other commonly used source localization algorithms.

I. INTRODUCTION

Magnetoencephalography (MEG) non-invasively detects

brain activity from direct measurements of the magnetic

field with an array of sensors; the observed field is gen-

erated by large ensembles of neurons firing synchronously,

approximated as compact current sources. Determining the

combination of sources that best explains the field record-

ings is an ill-posed inverse problem because the number

of potential sources is much greater than the number of

sensors. Determining the spatial distribution, orientation, and

time courses of these unknown sources is an open inverse

problem.

We have developed a novel empirical Bayesian scheme,

presented in [7] and [8], that improves upon existing methods

of source reconstruction in terms of reconstruction accuracy,

robustness, and efficiency. The algorithm derived from this

model, which we call Champagne, is designed to estimate

the number and location of a small (sparse) set of flexible

dipoles that adequately explain the observed sensor data. This

method relies on having access to pre- and post-stimulus

data, where the pre-stimulus data is thought to contain no

stimulus-evoked brain activity. We have shown that Cham-

pagne reliably reconstructs a large number of correlated

dipoles. The source time-course estimates from Champagne

are well suited for functional connectivity analyses.

Functional connectivity can be described as understanding

brain function in terms of the way information is transmitted

and integrated across brain networks. In the most complete

case, one would like to make inferences from a causal

linear model that describes the dependencies among activities

across all voxels. However, due to the large number of

voxels, solving such a model is computationally expensive

and virtually impossible with limited, noisy data. Instead,

existing techniques for estimating functional connectivity

approximate the full problem in various ways, but there

is a tradeoff between reducing the complexity and loss

of sensitivity. Paradoxically, inferences about connectivity

can be made from the correlations between source time-

courses, but many common localization algorithms have

significant trouble reconstructing correlated brain activity.

Consequently, there is a fundamental problem with applying

many existing localization methods to functional connectivity

estimation.

The solution obtained from Champagne is ideal for use

in functional connectivity analyses as it is robust to highly

correlated dipoles and it circumvents the issues of computa-

tional complexity by vastly pruning the number of active

voxels. We present new results from simulated and real

MEG data showing Champagne’s efficacy in reconstructing

brain activity and estimating functional connectivity as com-

pared to standard localization techniques such as generalized

minimum current estimation (MCE) [5], minimum variance

adaptive beamforming (MVAB) [4], and sLORETA [3].

II. METHODS

A. Source Localization: Champagne

The voxels time-courses (xn) are inferred from the sen-

sor data (yn) using a novel source-localization algorithm

called Champagne described in full detail in [7] and [8].

In summary, this method relies on segmenting the data

into pre- and post-stimulus periods, learning the statistics

of the background activity from the pre-stimulus period,

and then applying the statistics of the background activity

to the post-stimulus data to uncover the stimulus-evoked

activity. The underlying assumption is that the noise and

non-stimulus-locked brain activity present in the pre-stimulus

period continues into the post-stimulus period, where the

stimulus-evoked activity is linearly superimposed. We model

the pre- and post-stimulus sensor data as:

ypre
n = Bupre

n + vn (1)

ypost
n = Fxn + Bupost

n + vn (2)
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where the number of sensors is K, the number of voxels is L,

the number of inference factors is M, and the total number

of time points is N. yn is the K x 1 measured electromagnetic

signal vector at time n = 1 : N, xn is the L x 1 voxel activity

vector at time n = 1 : N, u
pre
n and u

post
n are the M x 1 pre-

and post-stimulus interference factors at time n = 1 : N, and

vn is the K x 1 sensor noise vector at time n = 1 : N. F is

the K x L leadfield matrix and B is the L x M interference

mixing matrix. Using a 2-dimensional leadfield results in the

interleaving of the leadfield columns for the two directions.

Likewise the number of voxel time courses is doubled to

represent the two dipolar directions at every voxel. (This

method can also be extended to 3 directions for use with

EEG data.) The dimensions of F becomes K x 2L and the

dimensions of xn becomes 2L x 1. Both vn and B are learned

from the pre-stimulus period using Variation Bayesian Factor

Analysis (VBFA) [1] and then used in the estimation of xn

and un with the post-stimulus data.

The signals x,u,v are assumed to be independent zero-

mean Gaussian distributions. While we make assumptions

about the prior distributions, we calculated full posteriors

(see below) which affords robustness to these assumptions

[1]. The precision matrices for the factors un and then sensor

noise vn are diagonal, where u
j
n has precision 1 and vi

n has

has precision λ i The precision matrix ν j for each x
j
n is a 2x2

matrix that allows for correlation between the two directions

of each dipole at every voxel. The entire precision matrix ν

is a 2L x 2L block-diagonal matrix.

The model distributions are:

p(yn|xn) = N (yn|Fxn + Bun,λ ) (3)

p(xn) = N (xn|0,ν) (4)

p(un) = N (un|0, I) (5)

p(vn) = N (vn|0,λ ) (6)

We can redefine the notation such that: x′n =

(

xn

u
post
n

)

,

F ′ = (FB), and ν ′ =

(

ν 0

0 I

)

.

With this new notation, the estimation problem in the post-

stimulus period reduces to:

ypost
n = F ′x′n + vn (7)

p(x′n) = N (x′n|0,ν ′) (8)

The posterior over x′n is Gaussian:

p(x′n|yn) = N (x′n|x̄
′
n,Γ) (9)

where

x̄′n = Γ−1F ′T λ yn (10)

Γ = F ′T λ F ′ + ν ′ (11)

The marginal log-likelihood function in this new notation

is:

L = ∑
n

log p(yn|ν
′) =

N

2

(

log|ν ′|+ log|Γ|−Q+ constant
)

(12)

where Q = 1
N ∑n x̄′nx̄′

T
n . We can derive an updates rule for ν ′

using an Expectation-Maximization (EM) algorithm, ν ′−1 =

Q, but this algorithm has a slow convergence rate for a large

number of voxels. Thus, we have derived a faster algorithm

that uses a fixed point method [6]. The update rule for ν ′

for this method is:

ν
′− 1

2 = S−
1
2 (S

1
2 QS

1
2 )

1
2 S−

1
2 (13)

where S = ν
′ 1

2 WF ′ν
′− 1

2 and W = Γ−1F ′T λ . The source

time courses are estimated from 10 are iteratively computed

with ν ′ in the algorithm. The convergence of Champagne is

relatively fast compared to the EM algorithm implementation

[7] and can be run in approximately ten minutes for 5000

voxels and 300 post-stimulus time points.

B. Functional Connectivity

We chose to employ two pair-wise connectivity metrics:

coherence and imaginary coherence and one multivariate

method: multivariate autoregression (MVAR). Coherence is

a traditional metric of connectivity and is the frequency do-

main representation of cross-correlation. The coherence is a

complex-valued quantity; we looked at both the magnitude of

the coherence and the imaginary part of the coherence alone.

Imaginary coherence is a relatively new metric developed for

use with MEG data [2]. It only reflects the coherence that is

non-instantaneously mixed. Functional connectivity methods

with MEG are subject to spurious correlations arising from

instantaneous correlations at the sensors. Coherence and

imaginary coherence contain complimentary information.

When pairwise metrics are used, we used the coherence mea-

sure to reconstruct the correlations and imaginary coherence

to determine which correlations are non-instantaneous.

MVAR models the data as linear mixing of current and

past values of the data, where the mixing is done with

a mixing matrix (of size number of sources by number

of sources) at every specified time lag. As compared to

the pair-wise metrics, MVAR takes into account all the

source voxels and models the data with access to all the

information. From the coefficients in the mixing matrix,

we can infer which nodes in the network are interacting

and the time-lag of interaction. While the pair-wise metrics

are symmetric, MVAR yields asymmetric results that can

be used to uncover causality in the network. MVAR is a

more powerful tool as it both quantifies the time scale of

interactions and provides directionality. Typically reducing

the number of candidate voxel time-courses limits the usage

of MVAR in such functional connectivity analyses, but

the sparse solution obtained with Champagne makes this

computationally intensive method an option.

C. Experimental Methods

Source Localization: We have tested Champagne using

simulated data with realistic source configurations. The data

time courses were partitioned into a pre-stimulus period

where there is only noise and interfering brain activity and

a post-stimulus period where there is the same (statistically)

noise and interference factors plus source activity of inter-

est. The pre-stimulus activity consisted of the resting-state

sensor recordings collected from a human subject and is
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presumed to have spontaneous activity (i.e., non-stimulus

evoked sources) and sensor noise; this activity was on-

going and continued into the post-stimulus period, where

damped-sinusoidal sources were seeded and projected to

the sensors through the leadfield. Champagne was tested

against three commonly used source localization algorithms:

generalized minimum current estimation (MCE), minimum

variance adaptive beamforming (MVAB) and sLORETA

in 100 simulation runs. We found that Champagne out-

performed these other algorithms in terms of localization

accuracy and time-course reconstruction at all four signal-

to-noise-plus-interefence ratios tested (-5 to 10dB). These

results are not shown, but can be found in [7].

We also ran Champagne on four real-world brain data-

sets: an auditory evoked field (AEF) data-set, a auditory

feedback perturbation task, a self-paced button press task,

and a language processing task. In the AEF task, a tone was

presented to a control subject 120 times; this data set is no-

toriously difficult to reconstruct due to the highly correlated

dipoles in the right and left auditory cortices. In the auditory

feedback perturbation task, the subjects auditory feedback

was pitch-shifted while he/she was actively articulating. In

the self-paced button press task, the subject was instructed

to press a button at his/her own pace. And in the language

processing task, the subject was orally presented with a noun

and was asked to think of an associated verb.

(a)Champagne (b)MVAB (c)Champagne (d)MVAB

Fig. 1. (a) and (b) performance on AEF data. Champagne (a) is able
to localize distinct dipoles in left and right auditory cortices. (c) and (d)
performance on auditory-feedback data-set showing increased activation
in superior temporal gyrus (bilaterally) after the perturbation uncovered
with Champagne (c). In both data sets, MVAB (b) and (d) is unable to
uncover the correlated auditory activations.

(a)Somato-motor Localization (b)SII Localization

Fig. 2. Champagne is able to uncover activations in motor cortex (bilat-
erally) and primary somatosensory cortex, SI shown in (a). Champagne
is also able to uncover an activation (b) secondary somatosensory cortex,
SII, which is generally hard to localize in MEG (shown by cross-hairs)

Functional Connectivity: We used simulated data to in-

vestigate Champagne’s ability to uncover interacting brain

activity. We used Gaussian noise, instead of the real-brain

noise described above. We used SNIR = 5dB and an intra-

dipole correlation of 0.5. We simulated a network of 7 nodes

(or voxels), where there were two networks, one left and

one right, and two deep ”common source nodes”. We first

localized the sources using Champagne, MVAB, MCE, and

sLORETA and then assessed the connectivity. The inter-

(a)0 to 100ms (b)100 to 200ms (c)200 to 300ms (d)300 to 500ms

Fig. 3. Performance on a language processing task where the subject
hears a noun (at 0ms) is asked to come up with an associated verb.
The activations shown in (a) through (d) show a flow of activation from
superior temporal gyrus ventrally to anterior temporal gyrus and dorsally
to a pre-central gyrus (motor) area. This dual stream of activations has
been reported in fMRI and is a current model of language processing.

dipole correlations are depicted in the diagram found in

Figure 5(a) where the color of the lines between the sources

denotes the strength of correlation, with red being high and

blue being weak (see colorbar in Figure 5(e). The line type

indicates whether the mixing was instantaneous (dashed) or

non-instantaneous (solid). The ”common source” nodes were

added to simulate the effect of instantaneous correlations on

the metrics. The voxels in the left and right networks were

all instantaneously coupled with the common source voxels,

but the coupling was a different strength.

In a second experiment, we increased the coupling be-

tween the common-sources and all the voxels relative to the

strength of coupling within the networks in order to test the

robustness to common-source interference. We also wanted

to test the performance of MVAR when we do not have

access to the common source time-courses, as is often the

case with artifacts and sources of noise. We simulated the

data with all seven nodes, but then used the five nodes of

the networks of interest to perform the MVAR analysis. We

used only the Champagne reconstructions for this analysis.

III. RESULTS AND DISCUSSION

Figure 1 through Figure 3 show the results obtained from

running Champagne on real brain data. See the captions

for a description of the results. The results obtained from

Champagne from these data sets agree with conventional

activation patterns. The auditory perturbation task is a novel

MEG dataset for which commonly used source localization

algorithms did not uncover meaningful activity, but Cham-

pagne is able to localize correlated activity. Figure 4 show

the source reconstruction results from Champagne (a), MCE

(b), MVAB (c), and sLORETA (d) respectively. The white

and black circles mark the true locations of the sources and

the surface plot shows the maximum intensity projection of

the power of the source estimate at every voxel, illustrating

the inferred location of the sources. While MCE came close

to uncovering all 5 nodes of the two networks, Champagne

was the only algorithm able to resolve the location and time-

courses of the two networks entirely. (Both common source

nodes were uncovered with Champagne, but one was below

the threshold of the image in Figure 4 (a).)

The functional connectivity results of the first experiment

are depicted in Figure 5 and the second experiment are

depicted in Figure 6. As described above, in the first ex-

periment we used the coherence measure to reconstruct the
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correlations (shown by the color of the lines) and imaginary

coherence to determine which correlations are instantaneous

or non-instantaneous (shown by dashed versus solid lines).

The similarity of the ground-truth (a) and Champagne (b)

plots demonstrates that these two quantities can be used in

conjunction to uncover the strength and lags (instantaneous

vs. non-instantaneous) of interactions in a network of brain

areas. The common sources are not shown to confound the

connectivity results with Champagne. MCE (c), MVAB (d)

and sLORETA (not shown) showed an over-estimation of the

connectivity and fail to reconstruct the ground-truth connec-

tivity. We decided to proceed with the connectivity analysis

with all the algorithms, regardless of success, because it is

common practice to do region-of-interest analyses.

In the second experiment, we increased the coupling

of the common-sources to investigate the resilience of the

functional connectivity methods to strong common-source

component. We found that the pair-wise metrics were not

able to uncover the two networks (with any algorithm)

due to this increased common-source coupling (not shown).

MVAR, on the other hand, is able to uncover the networks

by providing accurate information on the direction of the

interactions and the time lag of these interactions, Figure 6.
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(d)sLORETA

Fig. 4. Source Localization: Source localization results for (a)Champagne,
(b) MCE, (c) MVAB, and (d) sLORETA. The circles show the seeded
location of the sources and the surface plot shows the estimated location of
the sources.

IV. CONCLUSION

We have demonstrated that Champagne is able to uncover

brain activity in both simulated and real data. The sparse

solution to the inverse problem obtained from Champagne is

well suited for functional connectivity analyses as the num-

ber of active voxels is significantly smaller than with other

techniques commonly used, such as MVAB and sLORETA.

We have demonstrated that in certain situations, MVAR

outperforms coherence and IC in uncovering interactions and

lags in a network of brain areas in simulation. We plan to ex-

tend our functional connectivity techniques to the real brain

data presented here. This method holds promise in improving

both source localization and functional connectivity analyses

in tasks that require the integration of information across a

number of brain areas.
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(a) Ground-Truth Connectivity
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(b) Connectivity with Champagne
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(c) Connectivity with MCE
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(d) Connectivity with MVAB

(e)

Fig. 5. Functional Connectivity: (a) Ground-truth functional connectivity
between sources and ”common sources”. Reconstructed networks using
(b) Champagne, (c) MCE and (d) MVAB. The color (see (e)) shows the
strength of coupling and the line type shows the lag of integration.(solid for
instantaneous, dashed for non-instantaneous).

Fig. 6. Functional Connectivity: Plot of the rows of the MVAR mixing
matrix obtained for each seed voxel; the time-courss were obtained using
Champagne. The reconstructed connectivity found with Champagne is
nearly identical to the true connectivity. This plot shows that voxel 1 cause
voxels 2 and 3, and that voxels 4 causes voxels 5. The values here are
normalized to the maximum.
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