
  

  

Abstract— 0l  norm is an effective constraint used to solve 
EEG inverse problem for a sparse solution. However, due to the 
discontinuous and un-differentiable properties, it is an open 
issue to solve the 0l  norm constrained problem, which is 
usually instead solved by using some alternative functions like 

1l  norm to approximate 0l  norm. In this paper, a continuous 
and differentiable function having the same form as the transfer 
function of Butterworth low-pass filter is introduced to 
approximate 0l  norm constraint involved in EEG inverse 
problem. The new approximation based approach was 
compared with 1l norm  and LORETA solutions on a realistic 
head  model using simulated sources. The preliminary results 
show that this alternative approximation to 0l  norm is 
promising for the estimation of EEG sources with sparse 
distribution.  
 

I. INTRODUCTION 
urrent EEG inverse problem usually needs to solve the 
following underdetermined system [1], [2], 
                    ε+= AXY                                            (1) 

where Y is recording with size of 1×M , M is the number of 
sensors. A is the lead field matrix of NM × with N being the 
dimension size of possible solution space. X is the solution 
vector to be estimated. EEG inverse problem is usually 
underdetermined with M much smaller than N, thus the 
problem lacks a unique solution because there are an infinite 
number of possible solution configurations that could explain 
the measured recordings Y [1]-[3]. How to obtain a feasible 
solution consistent with the actual problem is still the focus in 
EEG or EMG inverse problem. To solve this 
underdetermined problem for a solution consistent with the 
actuality, some constraints are usually imposed. Those 
constraints such as the minimum norm least square solution 
(MNS) and the neighbor information of solution space like 
the Laplacian operator used in low resolution electromagnetic 
tomography (LORETA) are currently adopted. Sparse 
constraint is a possible alternative choice. The sparse 
activation has been observed from some physiological signals. 
For example, the main neural electric activities are usually 
 

Peng Xu, Xu Lei and Dezhong Yao are with Key laboratory for 
NeuroInformation of Ministry of Education, School of Life Science and 
Technology, University of Electronic Science and Technology of China, 
ChengDu, Sichuan, 610054, China. (Correspondence author: Dezhong Yao, 
email: dyao@uestc.edu.cn, Tel: +86-028-83207204) 

  Xiao Hu is with Neural Systems and Dynamics Laboratory, Department 
of Neurosurgery, the David Geffen School of Medicine, University of 
California, Los Angeles, 90095, USA 

  
 

sparsely localized, thus a sparsely localized solution may 
explain the scalp recordings in a more reasonable sense [1], 
[3], [4], [13]-[15].  

The original and most effective metric to measure the 
sparsity of a signal is the 0l  norm, which is to calculate the 

number of the non-null entries in the signal [5]. If the 0l  
norm of the solution is taken as a constraint, we have a 
Lagrange multiplier expression of the inverse problem (1) as, 

   02 ||||||||min XAXY
X

λ+−                                        (2) 

where λ  is the punishment factor of sparsity. However, 
formula (2) is not continuously differentiated and many 
effective gradient based optimization methods can not be 
directly applied to solve this problem, so in practice, 

)1( ≤pl p  norm is usually adopted to approximate 0l norm, 

among which 1l  norm is the most popular choice , whereas 
the approximation will decrease the solution sparsity to some 
degree [1], [5], [6]. To solve the 0l  constrained problem 
more robustly, we proposed to use a new function to 
approximate the 0l  norm. This new function is derived from 
the transfer function of a n-order low-pass Butterworth filter, 
the cutoff frequency of which will then be adaptively adjusted 
according to the source distribution estimated during the 
solving iterations.  

The method was introduced in Section II. In Section III, 
the algorithm was compared with LORETA and 1l  norm 
solution on a 3-shell realistic head model using the simulated 
source configurations having different number of sources. 
Discussions and conclusions concluded this paper in Section 
IV. 

II. METHOD 

A. Laplacian weighted minimum norm solution 
The weighted minimum norm solution is the mostly 

adopted one in the current EEG inverse problem [1], [6]. With 

weight matrix W, the weighted form of EEG inverse problem 

is, 

       εε +=+= + XAWWAXY                                 (3) 
where q  is an auxiliary variable. The weighted 
minimum-norm solution of the inverse problem is, 

    YAAWAWX TT +−−
∧

= ][ 11                               (4) 
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where +− ][ 1 TAAW  denotes the Moore-Penrose 

pseudo-inverse of ][ 1 TAAW − . The widely adopted 
Laplacian weight matrix W in EEG inverse problem has the 
form as [7], [13], [15],  
    BGW =  , with ||)||||,......,||||,(|| 21 NaaadiagG =         (5) 

where B  denotes the discrete spatial Laplacian operator; 
|||| ia  is the ith column norm of the lead field matrix A. The 

solution with such weight strategy is the low resolution 
electromagnetic tomography (LORETA) and the solution of 
LORETA is extensive and blurring. 

B. 1l  norm solution 

The object function for the 1l  norm solution is[1], [6], 

     12 ||||||||min XAXY
X

λ+−                             (6) 

In this paper, Levenberg-Marquardt procedure is used 
to solve this problem for the 1l  norm solution [8]. 

C. 0l  norm solution 

The low-pass Butterworth filter has form, 

             nxx
xH 2

0 )/(1
1)(

+
=                                     (7) 

where 0x  is the half cutoff frequency, and n defines the filter 
order. Because minimization is implemented in equation (2), 
we proposed to use the following function instead of 1l  norm 

to approximate the 0l norm term in equation (2), 

          nxx
xG 2

0 )/(1
11)(

+
−=                                      (8) 

The curves of 1l norm and G(x) with different n’s are 
shown in Fig.1(a). Figure 1(b) shows the curves of G(x) with 
different 0x ’s.   

As shown in Fig.1, the values of G(x) are very close to 
zero when x varies within a small range closely enclosed the 
origin of x-axis, and this small range is modulated by the 
selection of half cutoff frequency 0x , i.e., a small 0x  for a 
narrow notch and vice verse.  When x moves away from 
origin, G(x) will quickly change toward one. The effect of 0x  
can be obviously observed in Fig.1(b), where the 
approximation to 0l norm is well conserved with a very 

narrow notch when 0x  is small. Fig.1(a) shows that the order 
n will influence the ascending or descending slopes of the 
notch, and a large order will facilitate a steep slope. The 
difference between 1l  norm and G(x) can be revealed in Fig.1. 

No upper bound for 1l  norm and the G(x) behaves like a 
threshold function, which will map those x’s with small 
absolute values to around zeros and map those x’s having 
large absolute values to approximate ones. Because the ideal 

response of 0l norm is a notch impulse at origin, the values of 
which are all one except for zero at origin. Herein, G(x) is a 
more meaningful approximation to 0l  norm related term in 
equation (2). With this approximation, the EEG inverse 
problem denoted in (2) can be transformed to,  

  )(||||min 2 XGAXY
X

λ+−                                          (9) 

where 12
0

||)
)/(1

11(||)( nxX
XG

+
−= with 1|||| ⋅ being 

operator of 1l  norm. Because G(x) is continuous and 
differential in the whole domain, it is very easy to solve this 
problem with many effective gradient based optimization 
approaches. In this paper, we used Levenberg-Marquardt 
procedure to solve this problem [8].                                      

 

III. RESULTS 

D.  Head model and parameters setup 
A 3-shell realistic head model is used for EEG source 

localization, whose conductivities for cortex, skull and scalp 
are 110.1 −−Ω m , 1180/1 −−Ω m and 110.1 −−Ω m , 
respectively [9]. The solution space is restricted to cortical 
gray matter, hippocampus and other possible source activity 
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Fig.1. Approximation of 0l  norm. (a) 10 =x ; (b) n=3. 
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areas, consisting of 910 cubic mesh voxels with 10 mm 
inter-distance. A standard 128 electrode system was 
registered on this head model. The lead field matrix A is 
calculated with charge model by BEM [10] for the 128 
electrode system, and it is a matrix with dimension of 

910128 × . The detail for charge source model can refer to 
[11], [13]-[15]. The origin of the coordinate system is defined 
as the midpoint between the left and right pre-auriculars, and 
the directed line from the origin through the nasion defines 
the +X-axis, the +Y-axis is the directed line from the origin 
through the left pre-auricular. Finally, the +Z-axis is the line 
from the origin toward the top of the head (through electrode 
Cz). The punishment factor λ  is 1.0, and n is set to be 2 with 
2n=4. The half cutoff frequency 0x  is adaptively adjusted in 
iterations following  |)Xmax(|0.030 ×=x , where X is the 
strengths of estimated sources in current iteration.  

 

E. Simulated Results 

  In this section, 0l  norm solution is compared with 

LORETA and 1l  solution using different source 
configurations. LORETA solution is regarded as the initial 
distribution for both 0l and 1l  norm iterative procedures. 
Localization results of configurations with one, two and three 
sources are reported in Fig.2, respectively. Due to the paper 
limitation, we didn’t show the source information on the 
realistic head model for 2-source configuration and 3-source 
configuration. 
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IV. DISCUSSION AND CONCLUSION  
The reported results showed that LORETA localized 

sources with a blurred distribution, and 1l  and 0l  solutions 
are more focal and suitable for localization of sparse sources. 
However, some difference between 1l  and 0l  solutions can 

be observed. 1l  solution failed to localize one source in the 

2-source configuration, moreover 1l  solution is not clear  

with some strong fake sources still observed. However, 0l  
solution basically recovered the spatial information of 
sources though the strengths are not consistent with the 
simulated ones. For all the three solutions, the localization 
performance will be lowered when source configuration 
becomes more complex with increasing number of sources. 
The current preliminary studies were implemented in the 
noise free conditions, and λ  is a regularized parameter that 
can suppress the noise effect when noise is induced in 
recordings. But determination of suitable λ  is an open issue, 
which needs to use some complicated regularization 
techniques like L-Curve, etc [12].  
      These preliminary results reveal that 0l  solution may be a 
promising technique for sparse EEG source localization. 

Compared to 1l  norm constraint, the new approximation 

function is much closer to the actual 0l  norm, therefore the 
new constraint can improve the source estimation 
performance. Certainly, both 1l  and 0l  solutions are not 
suitable for the estimation of extended sources, which 
LORETA alternatively is more competitive. How noise and 
parameters in the approximation function G(x), i.e. filter 
order n and cutoff frequency 0x , influence source estimation 
need to be further studied in future work.  
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(f) 

Fig.2. LORETA, 0l  and 1l  solutions for simulated configurations 

with one, two and three sources. (a)~(c) are the information for actual 
sources and estimated sources listed by solution space index. (a) One 
source at (-13.0, -41.3, -28.3); (b) Two sources at (-73.0, -21.0, 31.7) 
and (-3.0, 39.0, 61.7); (c) Three sources at (7.0, -31.0, -28.3), (-73.0, 
-11.0, 41.7) and (37, 9.0, -18.3). (d)~(f) are the display of the source 

configuration in (a) on the realistic head model for LORETA, 1l  norm 

and 0l  solutions, respectively. Colorful rectangle area in (d)~(f) is the 

estimated source location; the blue cross line within the colorful 
rectangle area indicates the overlapping area of the simulated source 
and the estimated source.  
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