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Abstract—We have investigated the suitable spatial filters for 
inverse estimation of cortical dipole imaging from the scalp 
electroencephalogram. The effects of incorporating statistical 
information of noise into inverse procedures were examined by 
computer simulations and experimental studies. The parametric 
projection filter (PPF) was applied to an inhomogeneous 
three-sphere volume conductor head model. The noise 
covariance matrix was estimated by applying independent 
component analysis (ICA) to the scalp potentials. Moreover, the 
sampling method of the noise information was examined for 
calculating the noise covariance matrix.  The simulation results 
suggest that the spatial resolution was improved while the effect 
of noise was suppressed by including the separated noise at the 
time instant of imaging and by adjusting the number of samples 
according to the signal to noise ratio.  

I. INTRODUCTION 
LECTORENCEPHALOGRAPHY (EEG) has been a 
useful modality to provide high temporal resolution of 

underlying brain electrical activity. However the spatial 
resolution of EEG is limited due to the smearing effect of the 
head volume conductor. Equivalent dipole imaging has been 
proposed to estimate the high-resolution cortical dipole layer 
(DL) distribution to account for the scalp potential (SP) 
[1]-[8]. DL imaging provides the advantage that 
high-resolution brain electrical activity can be estimated 
without an ad hoc assumption about the number of source 
dipoles. We have developed an inverse procedure for cortical 
dipole source imaging using a parametric projection filter 
(PPF) which enables estimation of inverse solutions in the 
presence of noise information [9], [10]. Information related to 
noise distribution, as defined by the covariance matrix, is 
assumed to be known.  Our previous results indicated that the 
PPF provides a better approximation to the original DL 
distribution than that of traditional inverse techniques in the 
case of low correlation between signal and noise 
distributions. Moreover, Wiener reconstruction frameworks 
based on both signal and noise covariance matrices have been 
also investigated [2], [11]-[15].  

In fact, the signal and noise information are unknown in 
EEG measurements. However, in order to realize 
high-resolution brain functional imaging, it is necessary to 
estimate signal and noise components. In this study, the noise 
covariance matrix was estimated from the noise components 
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which were separated by applying independent component 
analysis (ICA) to the original EEG signals. Moreover, the 
sampling method of the noise information was examined for 
calculating noise covariance. We investigated the 
performance of these inverse filters by computer simulations 
and human experimental studies.  

II. METHOD 

A. Cortical Dipole Imaging 
In the cortical dipole imaging study, the head volume 

conductor was approximated by the inhomogeneous 
three-concentric sphere model [6]. This model incorporates 
variation in conductivity of different tissues such as the scalp, 
the skull, and the brain; it has been used to provide a 
reasonable approximation to head volume conductor for 
cortical imaging. An equivalent DL within the brain simulates 
the brain electrical activity. The transfer matrix from the DL 
to the SP is obtained by considering the geometry of the 
model and the physical relationships among the quantities 
involved. The DL distribution is reconstructed from the 
recorded SP by solving an inverse problem of the transfer 
matrix.  

The observation system of brain electrical activity on the 
scalp surface is defined using the following equation:  

 
  g = A f + n  (1) 
 

where f is the vector of the equivalent dipole sources 
distributed over the DL, n is the additive noise, and g is the 
SP. In addition, A represents the transfer matrix from the 
equivalent dipole sources to the SP signals. It is important to 
infer the origins from the recorded EEG and to map the 
sources that generate the scalp EEG. Thus, the inverse 
problem is defined as 

 
 f0 = B g (2) 
 

where B is the inverse filter from the scalp EEG to the DL 
distribution and f0 is the estimated source distribution of the 
DL. Because the number of measurement electrodes is always 
much smaller than the dimensions of the unknown vector f, 
this problem is an underdetermined inverse problem.  

B. Spatial Inverse Filter 
Several inverse techniques have been proposed to solve 

such inverse problems. In the presence of noise, the truncated 
singular value decomposition [16] or Tikhonov regularization 
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method [17] can be used to calculate the pseudo inverse filter.  
The parametric projection filter (PPF), which allows 

estimating solutions in presence of information on noise 
covariance structure, has been introduced to solve the inverse 
problem [9], [10]. The PPF is given by  

 
 B =  AT (A AT + γ Q)-1 (3) 

 
where γ is a small positive number known as the 
regularization parameter and AT the transpose matrix of A. 
The regularization parameter γ determines the restorative 
ability. The determination of the value of parameter γ is left to 
the subjective judgment of the user. We have developed a 
criterion that estimates the optimum parameter using iterative 
calculation for restoration [9]. The criterion estimates the 
parameter that minimizes the approximated error between the 
original and estimated source signals without knowing the 
original source distribution.  
    The matrix Q is the noise covariance derived from the 
expectation over the noise ensemble E[n nT]. Actually, each 
component of the matrix Q is approximated from  
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where J is the number of electrodes and K is the number of 
observations of sampled noise. In a clinical and experimental 
setting, the noise covariance Q might be estimated from data 
that are known to be source-free, such as pre-stimulus data in 
evoked potentials [11]. However, it was difficult to 
distinguish the noise from EEG data. In the present study, we 
estimate the noise covariance using ICA as described in next 
section.  
 

C. Independent Component Analysis 
The PPF in (3) requires the noise covariance. However, the 

signal and noise components are intermingled in the observed 
EEG signals. In such cases, each component was separated by 
ICA, which extracts independent sources from the observed 
signal based on statistical independence of the original signal. 
The FastICA algorithm was used for performing the 
estimation of ICA [18]. This algorithm is based on a 
fixed-point iteration scheme maximizing non-Gaussianity as 
a measure of statistical independence. Non-Gaussianity was 
measured using an approximation of negentropy. The outline 
of ICA algorithm is as follows:  

When independent sources s are mutually mixed by a 
mixing matrix M, the observed signal g is described by 

 
g = M s (5) 
 

First, the number of sources is decided using principal 
component analysis (PCA). The principal component z is 
expressed as  

z = V g  (6) 

 
where V is the whitening matrix. Actually, V serves to reduce 
the dimensionality of the matrix. Next, independent signals 
are estimated using the appropriate restoring matrix W. 
Finally, the original signal is estimated as 

 
s0 = W z (7) 
 

That is, an inverse of the mixing matrix M is described by 
multiplying a whitening matrix V and a restoring matrix W 
(M-1=W V).  

ICA was applied to EEG signals, and the independent 
components were extracted. These components were 
separated into the signal and the noise components according 
to the a priori anatomical information. Thus, we obtained the 
separated signal and noise by applying a mixing matrix. The 
noise covariance matrix was estimated from the differential 
noise between the original EEG signal and separated signal. 
Finally, the space inverse filter was designed using this noise 
covariance matrix for high resolution cortical dipole imaging. 

D. Simulation 
In the present simulation study, single dipole source was 

used to represent the spatial resolution of the brain electrical 
activity. The dipole was oriented radially to the sphere with 
varying strengths. The eccentricity of the source was set as 
0.7. The strength of the dipole changed as the damped 
oscillation with the frequency of 13 Hz giving the evoked 
potentials or the event-related potentials (Fig.1(a)). Data was 
collected for 0.4 s with a sampling of 100 Hz.  

In the inhomogeneous spherical source-conductor model 
[6], [11], the radii of the brain, the skull, and the scalp spheres 
were set to 0.87, 0.92, and 1.0, respectively [6]. The 
normalized conductivity of the scalp and the brain were set to 
σ0 = 1.0, and that of the skull to σs = 0.0125. The potentials on 
the scalp surface, generated by current dipoles inside the 
brain, can be calculated by solving the forward problem from 
the dipole source to the scalp-surface potential. The scalp 
potentials were contaminated with 5-20% Gaussian white 
noise (GWN). The strength of the DL distribution can be 
calculated by solving the forward problem from the assumed 
dipole source to the equivalent DL strength. A DL with 1280 
radial dipoles at a radius of 0.8 was used. We compared the 
ability of spatial inverse filters constructed with various noise 
conditions. We evaluated the estimating abilities using the 
relative error between actual and estimated DL distributions 
and maps of estimated cortical DL imaging.  

III. RESULTS 
We compared the estimation results when the noise 

covariance of the PPF was calculated with various conditions. 
Fig. 1(b) shows the separated signal components with ICA. 
Fig. 1(c) shows the differential noise components between the 
measured EEG and separated noise components which is 
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Fig.1. Example of the simulated EEG signals. (a) Simulated EEG 
signals contaminated with 10% GWN. (b) Separated signal components 
with ICA. (c) Differential noise components between (a) and (b).  
 
 

similar to the actual noise components. Figure 2 shows 
simulation results of relative error between the actual and 
estimated cortical maps (||f-f0||/||f||) against the time instant of 
noise. The dipole imaging was carried out at the time point of 
165ms that was peak of EEG signal in Fig.1 (a). The noise 
level was 0.1. The time interval of noise was 80ms. When the 
time interval of noise samples included the imaging time 
instant, the relative errors were dramatically reduced to 0.6. 
We confirmed that the estimated cortical maps were also 
improved.  

Figure 3 shows simulation results of the relative error 
between the actual and estimated cortical maps against the 
sampling number of noise. The dipole imaging was carried 
out at the time point of 165ms. The noise was sampled 
including the time instant of imaging. The optimum sampling 
numbers changed according to the noise level (NL) of the 
scalp potential. When the EEG signals are noisy in clinical 
measurements, the relative error can be reduced by increasing 
the sampling number.  

Figure 4 shows examples of the estimated inverse solutions 
of cortical dipole imaging for visual evoked potential (VEP). 
The maps shows the dipole layer distributions observed from 
the back of the head. Figure 4 (a)-(e) show estimated cortical 
dipole imaging using the PPF. Q was calculated from the 
separated noise of (a) K=10, (b) K=20, (c) K=30, and (d) 
K=40 samples. In Fig.4 (e), Q was calculated from 
pre-stimulus data. As compared with the scalp potential in 
Fig.4 (f), the estimated dipole imaging performed well.  
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Fig. 2. Simulation results of relative error between actual and estimated 
cortical maps against the time instant of noise. The dipole imaging was 
carried out at the time point of 165ms with a noise level of 0.1 and a 
time interval of noise of 80ms.  
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Fig. 3. Simulation results of relative error between actual and estimated 
cortical maps against the time interval of noise. The dipole imaging was 
carried out at the time point of 165ms. The noise was sampled including 
the time instant of imaging. 

 
 
Especially, when the Q was estimated with 20 noise samples, 
the maps demonstrated the localized area around the visual 
field with less noise.  

IV. DISCUSSION 
We considered improving the precision of cortical dipole 

imaging by applying spatial inverse filters incorporated with 
statistical information of noise. We examined new estimation 
methods of the noise covariance matrix for equivalent cortical 
dipole imaging using the PPF. The noise component was 
extracted from EEG signals using ICA. It was better to use 
differential noise for calculating noise covariance in PPF 
rather than separated noise. In the FastICA algorithm, PCA 
was used for reducing the dimension of the signals. Therefore, 
most of the noise components might be lost when separating 
noise.  

In this paper, we investigated the method of acquiring the 
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Fig. 4. Examples of the estimated inverse solutions of cortical dipole 
imaging for VEP. (a)-(e) Estimated cortical dipole imaging using PPF. 
Q was calculated from the separated noise of (a) K=10, (b) K=20, (c) 
K=30, and (d) K=40 samples. (e) Q was calculated from pre-stimulus 
data. (f) Scalp potential.  

 
 
noise data in order to calculate the noise covariance matrix Q 
built in the PPF by the computer simulation. As a result, it 
was confirmed that the accuracy was improved by calculating 
Q by containing noise information to the time point of the 
dipole imaging. Moreover, it has been understood that the 
estimated maps were localized by adjusting the time interval 
of noise according to the signal to noise ratio.  

In addition, the proposed method was applied to clinical 
data based on the above-mentioned results. In this case, when 
the time interval of noise was set to K = 40 ms for calculating 
Q, the DL distribution was blurred. On the other hand, when 
K = 10 ms or 20 ms, the peak of the DL distribution was 
well-localized while the noise was reduced. The obtained 
result was in good agreement with a physiological knowledge. 
These results suggest that the noise components obtained 
from ICA can be used for noise covariance estimation. 

Further investigations using a more realistic head 
conductor model and experimental data are necessary to 
validate the performance of the proposed model in cortical 
dipole source localization.  
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