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Abstract— In this paper, we propose a solution to the EEG
source localization problem considering its dynamic behavior.
We assume a dipolar approach which makes the problem non-
linear. From the dynamic probabilistic model of the problem,
we formulate the Extended Kalman Filter and Particle Fil-
ter solutions. In order to test the algorithms, we designed
an experimental protocol based on error-related potentials.
During the experiments, our dynamic solutions have allowed
the estimation of sources which are varying in position and
moment within the brain volume. Results confirm the activation
of the anterior cingulate cortex which is the brain structure

associated with error processing. These findings demonstrate
the good performance of the dynamic solutions for estimating
and tracking EEG neural generators.

I. INTRODUCTION

Electroencephalography (EEG) is a brain imaging tech-

nique that gives a unique access to the electric neural

activation, furthermore it has very good temporal resolution,

and it is non-invasive, very cheap and portable. Hence,

EEG is one of the most preferable technologies to study

the brain. However, clinical and functional interpretations

of EEG signals imply the speculation of the possible active

areas within the brain that generate those signals. For this

reason, the solution to the EEG source localization problem

attempts to find from EEG signals which regions of the

brain are active. There are two general approaches to solve

the EEG source localization problem, dipolar methods and

distributed methods [1]. Despite their differences, the large

majority of these methods share the property of providing

static solutions, they only use information from one time

instant, whereas the EEG sources and signals clearly have a

time varying nature.

To account for this limitation, in this paper we propose

a methodology for solving the so-called inverse problem

in EEG considering its dynamic nature. We first formulate

the dynamic model of the EEG source localization problem

in a probabilistic framework. Subsequently, we assume a

dipolar approach where sources positions and moments have

to be estimated. Under this context we derive the Extended

Kalman Filter (EKF) and Particle Filter (PF) solutions, which

give the advantage of consider that the neural generators

of the EEG signals changes according to some neural dy-

namic. Additionally, these solutions allow to incorporate

in the model the presence of noise in the measurements
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and even in the sources. An alternative advantage of PF is

that it can explicitly represent simultaneously many likely

solutions. In order to validate these formulations, we design a

neurophysiological protocol based on error-related potentials

where the main focus of neural activity is assumed to be

known as reported by other studies. The overall result is that

we successfully apply the EKF and PF in real settings to

estimate EEG sources.

II. DYNAMIC MODEL OF THE EEG SOURCE

LOCALIZATION PROBLEM

Let be Φ0...t the set of EEG signals up to time t acquired

with Ne electrodes attached at the scalp. The neural genera-

tors of these signals are Ns sources. The goal is to estimate

the sources parameters X = [r1, J1...rNs
, JNs

] (with r

being the position and J being the moment) at time t using

the measurements up to time t. For this, two probabilistic

equations are needed, a transition model p(X t|Xt−1, wt) and

a measurement model p(Φt|Xt, vt). Where Xt : ℜ6·Ns is the

source space, and Φt : ℜNe is the measurement space. The

random variables wt and vt represent the noise in the process

and in the measurements respectively.

With this representation, the goal is to compute a posterior

probability p(Xt|Φ0...t) to make inference about the sources

[2]. Using the Bayes theorem and assuming Markov process

we obtain the recursive update equation known as the Bayes

filter for the dynamic EEG source localization problem:

p(Xt|Φ0...t) = η·p(Φt|Xt)·

∫
p(Xt|Xt−1)p(Xt−1|Φt−1)dXt−1

(1)

Where η is a normalizing factor. To implement a solution

for the Bayes filter we need three distributions, the initial

posterior p(X0) that characterizes the prior knowledge about

the sources, the transition model p(Xt|Xt−1) that models

the time evolution of the neural sources, and the likelihood

p(Φt|Xt) that allows to obtain measurements given a source

space. The goal now for solving the dynamic EEG source

localization problem is to derive a solution to the Bayes filter.

A. Transition model

This mathematical model describes how the EEG sources

evolve over time which is unknown. Therefore we can

assume the transition as a random walk in the source space

[2], whereby the specific form of the transition model is

p(Xt|Xt−1) = N (Xt|Xt−1, Q). This assumption imposes

that the transition model is a zero-mean Gaussian density

with a diagonal covariance matrix Q whose elements repre-

sent the expected time evolution of each source parameter.
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B. Deriving dynamic solutions to the EEG source localiza-

tion problem

The dynamic EEG source localization problem can be

categorized depending on whether the location of the sources

is fixed or not, and on whether the type of the noise in the

measurements and in the sources is assumed to be Gaussian

or not. We focus on the dipolar approach where the location

of the sources is not fixed (non-linear situation) and we

assume Gaussian noise. This is because we are interested

in modeling few focal areas of the brain. For this case

the unknown source space is given by the set of positions

and moments for each source X = [r1, J1, ...rNs
, JNs

],
the transition model is given by N (Xt|Xt−1, Q) and the

measurements model is given by p(Φt|Xt). We will derive

now the EKF and PF dynamic solutions to the EEG source

localization problem.

1) Aplying Extended Kalman Filter (EKF) to solve the

dynamic EEG source localization problem: The EKF solu-

tion assumes that the nonlinear equation of the measurement

model can be locally linearized. In order to estimate X t at

time t, the EKF performs recursively two steps, i) a time

update step which estimates the next state Xt using the

linear transition equation, and ii) a measurement update step

which adjust the estimated state Xt by using the current

measurements Φt via the linearization of the measurement

model [3].

2) Aplying Particle Filters (PF) to solve the dynamic

EEG source localization problem: The goal in this solution

is to get a set of N samples or particles {X
(i)
t }N

i=1 that

represents the posterior distribution p(Xt|Φ0...t). We start

with a set of particles {X
(i)
t−1}

N
i=1 distributed according to

p(Xt−1|Φ0...t−1), then, by applying the transition model to

each particle we obtain a new set {X̃t

(i)
}N

i=1 which is dis-

tributed according to p(Xt|Φ0...t−1). Then, using the actual

measurements, importance weights {w
(i)
t }N

i=1 are computed

through the likelihood function w
(i)
t ∼ p(Φt|X̃t

(i)
). After-

ward, a resampling-selection step is applied to the weighted

sample set {X̃t

(i)
, w

(i)
t }N

i=1 discharging/multiplying particles

with low/high importance weights [5], so that finally we

get the sample set {X
(i)
t }N

i=1 distributed according to the

posterior p(Xt|Φ0...t) which can be used to make inference

about the sources space Xt at time t.

3) Parameters of the methods: To implement these non-

linear dynamic solutions, we further need the process covari-

ance Q, which is determined based on physiological basis;

the noise covariance R, which can be estimated with some

EEG measurements; the initial estimation X0 which can

be computed using a static solution such as Beamforming

LCMV [4] and the initial density p(X0) which can be

normally distributed with mean X0 and covariance Q. In

the PF, the likelihood function is assumed to be a zero-mean

Gaussian function p(Φt|Xt) = N (Φt|Xt, R) and the particle

with the highest weight in the posterior is selected to be the

sources state Xt.
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Fig. 1. Typical waveform of an interaction error-related potential at
electrode Cz recorded during the experimental protocol.

III. EXPERIMENTAL VALIDATION

A. Experimental protocol, instrumentation and head model

In order to assess in real settings the performance of the

algorithms, we have designed a protocol based on error-

related potentials (ErrP) since there is evidence of the brain

regions that generate these potentials [6].

Recently, it has been probed during brain-computer ex-

periments that an ErrP is evoked after a person is aware

of the occurrence of an interaction error [7]. Roughly, this

error (named interaction ErrP) has a waveform with four

prominent peaks as shown in figure 1. The importance of this

ErrP in our context is that for these peaks the main focus

of neural activity is expected to be mainly in the anterior

cingulate cortex or ACC (Brodmann areas 24 and 32). To

elicit the ErrP we have implemented a protocol similar

to Ferrez’s protocol, where a subject facing a computer

screen is concentrated in a green block that is moving from

right to left (machine task). While the machine is executing

the task, sometimes the block moves to the right (which

emulates a machine error) evoking the ErrP. We performed

this experiment with one subject while EEG signals were

acquired. The whole experiment consisted of 11 sessions

with 5 errors trials each one.

The general instrumentation is based on a commercial

gTec EEG system. The EEG signals were digitalized with a

sampling frequency of 256Hz, power-line notch-filtered and

bandpass-filtered between 0.5 and 60Hz. After the recording

sessions, the EEG signals were average referenced and band

pass filtered from 1 to 10Hz. A time window of one second

was selected after the ErrP stimulus onset.

The head was modeled by a homogeneous sphere of radius

96mm that represents the skin and the sources were restricted

to be located only within a innermost sphere of radius

84mm that represents the brain. The measurement space is

a set of 32 electrodes from the 10-10 international system

projected to lying on the sphere surface. In order to solve the

forward model, the head model, the sources position and the

electrodes locations where defined in the coordinate system

of the MNI head model.

B. Analysis and Results

For all the ErrP single trials, the main neural sources were

estimated using the EKF and the PF. We have also computed

the static dipolar solution given by the beamforming LCMV

algorithm.
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TABLE I

TWO MORE FREQUENT BRAIN STRUCTURE AND BRODMANN AREA ESTIMATED WITH LCMV, EKF AND PF AT THE OCCURRENCE OF THE PEAKS FOR

ALL THE ERRP’S SINGLE TRIALS.

Peak LCMV EKF PF

1

Anterior Cingulate/Gyrus
55%

Anterior Cingulate
55%

Anterior Cingulate/Gyrus
73%

BA’s 24, 25, 32, 33 BA’s 24, 32 BA’s 24, 25, 32, 33

Parahippocampal Gyrus
18%

Cingulate Gyrus
18%

Posterior Cingulate
18%

BA’s 27, 28, 34, 35 BA’s 24, 25, 32, 33 BA’s 23 and 31

2

Parahippocampal Gyrus
36%

Anterior Cingulate/Gyrus
55%

Anterior Cingulate/Gyrus
55%

BA’s 27, 28, 34, 35 BA’s 24, 25, 32, 33 BA’s 24, 25, 32, 33

Lingual Gyrus
36%

Parahippocampal Gyrus
27%

Parahippocampal Gyrus
27%

BA’s 18 BA’s 27, 28, 34, 35 BA’s 27, 28, 34, 35

3

Anterior Cingulate
55%

Anterior Cingulate/Gyrus
45%

Cingulate Gyrus
36%

BA’s 24, 25, 32, 33 BA’s 23, 24, 32 BA’s 23, 24, 32

Insula
18%

Medial Frontal Gyrus
18%

Anterior Cingulate
27%

BA’s 13 BA’s BA’s 24, 32

4

Parahippocampal Gyrus
55%

Parahippocampal Gyrus
36%

Parahippocampal Gyrus
36%

BA’s 27, 28, 34, 35 BA’s 27, 28, 34, 35 BA’s 27, 28, 34, 35

Anterior Cingulate
27%

Anterior Cingulate/Gyrus
36%

Cingulate Gyrus
27%

BA’s 24, 32 BA’s 23, 24, 32, 33 BA’s 23, 24, 32

mean (0.5 sec)

Anterior Cingulate
45%

Anterior Cingulate
55%

Anterior Cingulate
63%

BA’s 24, 32 BA’s 24, 32 BA’s 24, 32

Cingulate Gyrus
36%

Cingulate Gyrus
45%

Cingulate Gyrus
36%

BA’s 23, 24, 32, 33 BA’s 23, 24, 32 BA’s 23, 24, 32

1) Dynamic neural estimation of the ErrP single trials:

The objective of this first analysis was to assess the estima-

tions obtained with the EKF, PF and LCMV solutions for all

the ErrP’s single trials. As in previous studies, we assume 1

dipolar source [6]. Commonly, event related potentials such

as ErrP’s requires the average of many trials in order to

reduce the noise levels, however, our dynamic approaches

allow the source localization of ErrP single trials since the

algorithms incorporate in the solution model the presence

of noise in the measurements. Table I shows the two more

frequent brain structures and their associated Brodmann areas

estimated by the three methods precisely at the occurrence

of the four peaks showed in figure 1. As it can be seen, for

the majority of the ErrP peaks, the source is located in the

Anterior Cingulate (BA’s 24 and 32) and in the Cingulate

Gyrus (BA’s 25 and 33). These results demonstrates that in

the majority of the trials, the ACC is systematically activated

during the occurrence of the four prominent peaks. For

example, notice that for the first peak the main focus of

brain activity estimated by the EKF and PF is located in the

Anterior Cingulate and in the Cingulate Gyrus in the 73% of

the ErrP’s, however the main focus of activity estimated by

the LCMV algorithm is located in these regions in the 55%

of the ErrP’s. This table also shows the location of the mean

estimated source over half a second after the ErrP stimulus

onset. For this case, the EKF and the PF estimated the brain

activity in the anterior cingulate (BA’s 24 and 32) in 55%

and 63% of the ErrP’s respectively. These findings agree

with the mean location over half a second reported in other

neurological studies of error potentials [6]. To summarize,

these results confirm the fact that at the occurrence of the

ErrP peaks and during the whole time interval after that the

ErrP is elicited, the main focus of neural activity is located

in the brain region covered by the ACC.

2) Neural estimation assuming one and two dipolar

sources: In the second analysis the objective was to assess

the estimation given by the dynamic solutions during the

whole ErrP time window assuming 1 and 2 dipolar sources.

Figure 2 shows the position time course during half a second

of the estimated sources obtained with the EKF solution

over a brain sagittal view. Brodmann areas 24 and 32 are

represented by the dark grid within the brain volume. The

solution obtained assuming one dipole (figure 2a) shows that

during the occurrence of the ErrP peaks the source is located

very near to the volume that covers the ACC. Similarly, in

the solution obtained assuming two dipoles (figure 2b) one

of the sources (plotted in red) is located almost during the

whole time window within the grid that covers the ACC.

Comparing the moment of this source with the moment of

the second source (plotted in green) during the ErrP peaks,

we found that the strength of the source within the ACC

is greater than the source outside the ACC. These results

explicitly shows that assuming one or two dipoles, the PF

estimate the sources within the volumen that cover the ACC.

3) Comparison with static methods: Finally, figure 3

displays for one of the ErrP’s the estimated position and

moment components obtained with the three methods assum-

ing one dipolar source. Notice that all the methods produce

similar estimations. From these results, one could infer that

three methods of very different nature (one static method and

two dynamic solutions with different hypotheses) estimate

closely the same solution which indicates the validity of the

proposed dynamic EKF and PF solutions. However, in some

time instants, the graph of the estimated position given by

the static LCMV method shows abrupt changes. To evaluate

this observation, figure 4 shows the magnitude of the position

first derivative given by the algorithms. This result explicitly

shows the sudden variations in the estimation of the position

given by methods that do not address the dynamic nature

of the problem. In particular, it can be observed that in

many times the position changes abruptly for the static

Beamforming LCMV solution, on the other hand the position
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(a)

(b)

Fig. 2. Views of the brain showing the estimation time course given
by the EKF assuming (a) one dipolar source and (b) two dipolar sources.
Dotted circles represent the spherical head model used to solve the forward
problem.

always change gradually for the EKF and PF estimations.

From these results, we can state that the dynamic methods

show a good performance in terms of position estimation

since they consider that the dynamic position changes of the

EEG sources occurs gradually.

IV. CONCLUSIONS AND FUTURE WORKS

We have described a methodology to solve the EEG source

localization problem considering its dynamic nature. We

first obtain the Bayes filter for the EEG source localization

problem which allows to recursively update the posterior

probability of the neural sources given EEG measurements.

Subsequently, for the dipolar and non-linear approach we

derived the EKF and PF solutions. To assess the performance

of the algorithms we designed a neurophysiological protocol

based on error-related potentials. Our dynamic solutions

confirm the activation of the ACC during the ErrP peaks

which is the brain region associated with error processing.

These results demonstrate that the application of EKF and

PF for estimating the EEG neural sources is very promising,

which can be explained by the fact, among other reasons, that

these algorithms take into account the neural dynamics, the

non-linearity of the measurement model, and the presence of
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Fig. 3. Time course estimation of the (a) position and (b) moment
components for one of the ErrP’s trial.
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noise in the measurements and in the EEG neural generators.

In the future work, a more intensive experimental procedure

using different kinds of error potentials such as response and

observation errors will be used to validate the algorithms.

Also, we will extend their implementation in realistic head

models. Finally, we will improve the potentiality of the

algorithms in three aspects, first, in the EKF the on-line

recognition of error during BCI experiments, in the PF

the identification of various likely solutions, and third, a

switching model approach by selecting at each time instant

the best solution between various EKF’s and PF’s running

in parallel.
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