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ABSTRACT

Image registration is a crucial step for many image-
assisted clinical applications such as surgery planning and
treatment evaluation. In this paper we proposed a landmark
based nonlinear image registration algorithm for matching
2D image pairs. The algorithm was shown to be effective and
robust under conditions of large deformations. In landmark
based registration, the most important step is establishing the
correspondence among the selected landmark points. This
usually requires an extensive search which is often computa-
tionally expensive. We introduced a nonregular data partition
algorithm using the K-means clustering algorithm to group
the landmarks based on the number of available processing
cores. The step optimizes the memory usage and data trans-
fer. We have tested our method using IBM Cell Broadband
Engine (Cell/B.E.) platform.

1. INTRODUCTION

Image registration is the process of determining the linear or
nonlinear mapping between two images of the same object
or similar objects acquired at different time, or from differ-
ent perspectives. Given two images taken at different time
(usually one is referred to as fixed image and the other is the
moving image), the problem can be described as finding a lin-
ear or nonlinear transformation which maps each point in the
fixed image to a point in the moving image. For nonlinear reg-
istration, some of methods describe the transformation based
on elastic deformations, such as fluid deformation based algo-
rithm [1, 2] and Demon’s algorithm [3, 4]. The others model
the transformation by a function with some parameters, such
as B-spline based image registration algorithm [5].

Both intensity and landmark based methods have been re-
ported to be effective in managing various registration tasks.
Hybrid methods which integrate both strategies are also pro-
posed for fully automatic registration applications [6, 7, 8].
Point matching in medical images is particularly challenging
due to the variability introduced by image acquisition and the
variation of the anatomical structures. Automatic algorithms
for landmark detection and matching have been developed

[6, 7], though the robustness of those methods has not been
sufficiently demonstrated.

We introduce an alternative landmark point detection and
matching method for performing the landmark based image
registration for 2D images. The algorithm applies a Harris
corner detector to find the landmarks and subsequently uti-
lizes robust estimation to reject the outliers. It is fully au-
tomatic and unsupervised. The resulting landmark pairs are
then used to estimate the nonlinear transformation T . We
have developed a unique landmark based registration frame-
work, which has proven to be effective in registering an image
pair of large transformations or deformations.

In our proposed landmark based image registration al-
gorithm, a major performance bottleneck was the landmark
matching process since the algorithm relies on finding a large
number of matching landmark points for accuracy. In this
paper, we present a new accelerated parallel implementation
of the landmark matching, which takes advantage of the data
independence property of the algorithm. The parallel algo-
rithm was implemented on the IBM Cell/B.E. multicore plat-
form. The algorithm is very fast and can handle large trans-
formation and deformation while still providing good regis-
tration results. The proposed image registration algorithm is
described in Section 2. In Section 3, we describe a new non-
uniform data partitioning and parallelization approach. The
experimental results are presented in Section 4. Section 5
concludes the paper.

2. LANDMARK BASED IMAGE REGISTRATION

The image registration algorithm begins by automatically de-
tecting a set of landmarks in both fixed and moving images,
followed by a coarse to fine estimation of the nonlinear map-
ping using the landmarks. Robust estimation is used to find
the robust correspondence between the landmarks in the fixed
and moving image. The refined inliers are used to estimate a
nonlinear transformation T and also deform the moving im-
age to the fixed image.

The automatic landmark detection is the procedure used
to accurately detect of the prominent and salient points in
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the image. Harris corner detector was applied to find the
points with the large gradients in both directions (x and y for
2D images). The original computation in the Harris corner
detector involves the computation of eigenvalues. Instead,
the determinant and trace are used to find the corners using
F = det(A)− αtrace(A) where α is chosen as 0.1.

After we detect the landmarks, we can extract features
from the neighborhood of each landmark. The local orienta-
tion histograms are used as the features for landmark match-
ing. The image is first convolved with the orientation fil-
ters. The filtering response in the neighborhood around the
landmarks is computed to compose the local orientation his-
togram. The local orientation histogram encodes the direc-
tions of the edges at each landmark point. It has proven to be
an effective feature descriptor when the training samples are
small [9].

In order to achieve robust matching of the landmarks, an
extensive search in the image space and parameter space is re-
quired. This step is time consuming and often create the bot-
tleneck for the landmark based image registration algorithm.
In Section 3, we will show the time profile for each step in the
whole procedure and clarify that the landmark matching step
dominate the execution speed.

Because the original matching landmark sets contain
missing landmarks, RANdom SAmple Consensus (RANSAC)
[10] is used to reject outliers and robustly estimate the trans-
formation. The RANSAC robust estimator randomly selects
the minimal subset of the landmarks to fit the model. Mea-
sured by a cost function, the points within a small distance
are considered as a consensus set. The size of the consensus
set is called the model support M . The algorithm is repeated
multiple times and the model exhibiting largest support is
recorded as the robust fit. In Figure 1 we show the results of
applying robust estimation to reject the outliers in the original
matching landmarks. The Harris corner detector detected 32
landmark pairs in Figure 1b. Based on the assumption of an
affine transformation, the RANSAC found 8 inliers (shown in
Figure 1c) and the rest 24 matching landmarks are rejected as
outliers under the assumption for an Affine transformation.

The thin plate spline transform (TPS) is used to estimate
the nonlinear transformation between the fixed and moving
image based on the robust landmark correspondence. The
TPS transformation T is calculated by minimizing the binding
energy. It can provide a smooth matching function for each
point in both images. The resulting nonlinear transformation
is applied to map the moving image to the fixed image. For
more details, we refer readers to [11].

The adaptive multi-resolution landmark based image reg-
istration algorithm can provide good registration results, but
requires relatively time consuming point matching proce-
dures. In Figure 2 we show the execution time profile for
each step in our algorithm for a typical 2D (192×192) image
pair registration. It is quite obvious that the bottleneck is the
point matching step. However, as mentioned previously, the

(a) (b) (c)

Fig. 1. Apply the robust estimation to find the robust land-
mark correspondence. (a)The original fixed and moving im-
age. (b)The original pairs of matching points. (c)The robust
matching points after rejecting the outliers.

Fig. 2. The time profile for the entire nonlinear registration
algorithm (seconds)

point matching procedure in the proposed algorithm offers a
significant advantage for easy parallelization by its design:
data independence. Each landmark in the fixed image is in-
dependent of all other landmarks, and its best match in the
moving image is restricted to a certain size of moving image
patch. By fully utilizing this property, we propose to apply
K-means data partitioning approach, and it has been suc-
cessfully implemented on the IBM Cell Broadband Engine
processor.

3. PARALLELIZATION ON THE CELL/B.E.

The IBM Cell/B.E. [12] is a multicore chip with a relatively
high number of cores. It contains a Power Processing Ele-
ment (PPE) which has the similar function and configuration
as the regular CPU. It also has multiple cores which are op-
timized for single precision float point algorithm, the Syner-
gistic Processing Element (SPE). The PPE contains 32K L1

cache, 512K L2 cache and a large amount of physical memory
(2G in our case). Unlike the PPE, the SPE has a quite differ-
ent architecture compared with the standard CPU. The SPE
operates on a 256KB local store to hold both the code and
data. The SPE also support 128 bit Single Instruction, Mul-
tiple Data (SIMD) instruction set for effective vector opera-
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Fig. 3. The landmark distribution on each SPE unit of the
IBM Cell/B.E.

tions. The data transfer between the SPE and PPE is through
the direct memory access (DMA). DMA is quite time con-
suming therefore a good parallel implementation should min-
imize the number of DMA operations.

Given all the detected landmarks in the fixed image, we
first apply the K-means algorithm to cluster them based on
their Euclidean distance in the image, where K = 16 is set to
be the number of the computing units in the IBM Cell Blade
machine. Based on the boundary landmarks in each cluster
center, we can calculate the largest and smallest coordinates
to crop the sub-image accordingly. Because we know the size
of the code running on the SPE unit in advance, we can com-
pute the maximal size of the sub-image that can be stored on a
single core (e.g. single SPE). If the image patch can fit into the
local storage, the whole cluster of landmarks and their corre-
sponding image patch are sent to the SPE for parallel process-
ing using just one direct memory access (DMA). Because the
number of DMA is critical for the performance of the parallel
algorithm, the advantage of applying K-means to group the
landmarks into clusters is to minimize the number of direct
memory access operations. Landmarks which are spatially
close to each other are grouped together and transferred into
one computing core (e.g. one SPE in a Cell Processor) using
one DMA call.

The purpose of applying K-means clustering for data par-
titioning is to decrease the number of direct memory access
(DMA) operations. However, in order to fully utilize each
SPE computing unit, the work load should be balanced. Be-
cause the algorithm selects the landmarks considering their
spatial relationships, the K-means clustering intends to pro-
vide similar amount of landmarks in each cluster. In Figure 3
we show a typical work load distribution for one image pair
on 16 SPE, it is clear that the number of landmarks assigned
to each cluster roughly form a uniform distribution. The main
processor or main core (e.g. PPE) is responsible for spooling
and destroying all the threads of computing cores (e.g. SPE).
It is also in charge of assembling all the matching points that
returned from each SPE and converts the results back to the
original image coordinate systems. Robust estimation is ap-
plied to reject outliers and preserve the robust landmark cor-
respondence. Nonlinear transformation is finally estimated to

register the fixed image and the moving image.

4. EXPERIMENTAL RESULTS

The test data used in our experiments were prepared in the
department of Radiology, University of Medicine and Den-
tistry of New Jersey. The dimensionality of the test image is
192×192 and the x and y resolution are 1.41 mm. We test our
algorithm using the simulated affine transformations. Forty
simulated 2D human abdomen CT images were generated
by applying forty simulated deformations. The algorithm
is compared with the multiple resolution affine registra-
tion implemented in ITK (http://www.itk.org) and also the
free software MedINRIA developed by INRIA (http://www-
sop.inria.fr/asclepios/software/medinria/). The registration
accuracy is evaluated based on whether the algorithm can
successfully recover the affine transformation parameters.

We define E = max
{
|p∗t−pt|

δt
,
|p∗r−pr|

δr
,
|p∗s−ps|

δs

}
where

the p∗t , p
∗
r , p

∗
s represent the estimated translation, rotation and

scale parameters. The pt, pr, ps are the ground true transfor-
mation parameters. The δt = 1, δr = 0.5, δs = 0.01 are the
normalization factors for translation, rotation and scale, re-
spectively. The registration is considered successful if E ≤
1.0. Our proposed algorithm can recover 95% of the image
pairs while the ITK and MedINRIA can only recover 70%
and 50%, respectively, for image pairs with large deforma-
tion. From the experimental results we show that the pro-
posed algorithm can accurately register two images under 2.5
times scale differences and 45 degrees of rotation. It is clear
that our algorithm provides robust registration for large defor-
mations when compared with the implementation in ITK and
MedINRIA.

We also tested our algorithm using the CT scans from two
different persons, and the imaged pathology specimens. We
experimentally demonstrated that the algorithm can be ap-
plied to a wide range of medical image registration applica-
tions. Some experimental results are shown in Figure 4. The
first row represents the fixed image. The second row is the
moving image and results are shown in the third row. The
registered images shown in the third row of Figure 4 are ex-
pected to be similar to the fixed images shown in the first row.

The parallelization code was compiled for two differ-
ent platforms. The parallel version was running on an IBM
BladeCenter Q21 featuring 2GB of RAM and two proces-
sors running at 3.2 GHz configured as a two-way, symmetric
multiprocessor (SMP). A thread running on a PPE can com-
municate with all 16 SPEs. The Cell/B.E. SDK 3.0 and GCC
compiler were used to implement and compile the algorithm.
In all our experiments, there was one main thread running
on one of the PPEs and up to 16 threads on the SPEs. The
sequential version was running on a x86 machine at 2.6 GHz
and 4G memory. The compiler is also GCC.

All the image pairs used for testing have dimensionality
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Fig. 4. The experimental results using different test image
pairs. (a) and (b) The human abdomen CT image pair. (c)
The MRI image of two different human head. (d) and (e) The
imaged pathology specimens of human breast tissue.

Table 1. The comparative experiments of the point match-
ing procedure using the sequential and parallel multicore plat-
form (seconds)

Mean Variance Median
x86 5.95 0.26 5.82

Cell/B.E. (PPE only) 6.13 0.001 6.12
Cell/B.E. (16 SPEs) 0.71 0.0032 0.70

(192 × 192). Because the point matching procedure domi-
nates the running time of the registration algorithm, this step
is the only part parallelized on the Cell/B.E. For fair compar-
ison we run each implementation (sequential and parallel) 10
times. The comparative experiments of the running speed of
the point matching procedure on two platforms are shown in
Table 1. Please notice that x86 refers to the sequential imple-
mentation on a x86 machine running the Linux. The Cell/B.E.
(PPE only) denotes the running time on the multicore pro-
cessor using only the main processor PPE. The Cell/B.E. (16
SPEs) represents the parallel running time by fully utilizing
all the 16 computing cores (SPEs). Using the multicore plat-
form, we roughly achieved 10 times of speedup over its corre-
sponding sequential implementation. In total, the parallel ver-
sion of the algorithm can register a pair of image (192× 192)
in less than five seconds.

5. CONCLUSION

In this paper, we have explained a parallelization of a robust
and accurate 2D image registration algorithm. The method is
implemented on an IBM Cell/B.E. We have achieved approx-
imately 10 fold speed up compared with its sequential imple-
mentation. Our proposed data partitioning approach and the
parallelization schema are independent of the parallel plat-
forms and are generic by design, therefore it can be extended
to other applications on other parallel platforms.

6. ACKNOWLEDGEMENT

This research was primarily conducted in IBM Watson Re-
search Center funded by its internship program. It is also
supported in part, by grants from the NIH through contract
5R01EB003587-04 from the National Institute of Biomedical
Imaging and Bioengineering and contract 5R01LM009239-
02 from the National Library of Medicine. Additional support
was provided by IBM through a Shared University Research
Award.

7. REFERENCES

[1] B. Cena, N. Fox, and J. Rees, “Fluid deformation of serial
structural MRI for low-grade glioma growth analysis,” in MIC-
CAI, 2004, vol. 3217, pp. 1055–1063.

[2] E. Agostino, F. Maes, D. Vandermeulen, and P. Suetens, “A
viscous fluid model for multimodal non-rigid image registra-
tion using mutual information,” Medical Image Analysis, vol.
7, no. 4, pp. 565–575, 2003.

[3] J. P. Thirion, “Image matching as a diffusion process: An anal-
ogy with Maxwell demons,” Medical Image Analysis, vol. 2,
no. 3, pp. 243–260, 1998.

[4] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Non-
parametric diffeomorphic image registration with the demons
algorithm,” in MICCAI, 2007, vol. 4792, pp. 319–326.

[5] R. Szeliski, R. Szeliski, J. Coughlan, and J. Coughlan, “Hierar-
chical spline-based image registration,” International Journal
of Computer Vision, pp. 194–201, 1994.

[6] C. DeLorenzo, X. Papademetris, K. Wu, K. P. Vives,
D. Spencer, and J. S. Duncan, “Nonrigid 3D brain registra-
tion using intensity/feature information,” MICCAI, vol. 4190,
pp. 1611–3349, 2004.

[7] B. Fischer and J. Modersitzki, “Combination of automatic and
landmark based registration: the best of both worlds,” SPIE
Medical Imaging, pp. 1037–1047, 2003.

[8] A. Azar, C. Xu, X. Pennec, and N. Ayache, “An interactive
hybrid non-rigid registration framework for 3D medical im-
ages,” Proc. International Symposium on Biomedical Imaging,
pp. 824–827, 2006.

[9] K. Levi and Y. Weiss, “Learning object detection from a small
number of examples: the importance of good features,” in
CVPR, 2004, vol. 2, pp. 53–60.

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus:
A paradigm for model fitting with applications to image anal-
ysis and automated cartography,” Comm. of the ACM, vol. 24,
pp. 381–395, 1981.

[11] H. Chui and A. Rangarajan, “A new point matching algorithm
for non-rigid registration,” Computer Vision and Image Under-
standing, vol. 89, no. 2, pp. 114–141, 2003.

[12] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell broad-
band engine architecture and its first implementation - A per-
formance review,” IBM J. Res. Develop., vol. 51, no. 5, pp.
559–572, 2007.

101


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

