
  

  

Abstract—A novel optical non-invasive in vivo blood glucose 
concentration (BGL) measurement technique, named "Pulse 
Glucometry", was combined with a kernel method; support 
vector machines. The total transmitted radiation intensity (Iλ) 
and the cardiac-related pulsatile changes superimposed on Iλ in 
human adult fingertips were measured over the wavelength 
range from 900 to 1700 nm using a very fast spectrophotometer, 
obtaining a differential optical density (ΔODλ) related to the 
blood component in the finger tissues. Subsequently, a 
calibration model using paired data of a family of ΔODλs and 
the corresponding known BGLs was constructed with support 
vector machines (SVMs) regression instead of using calibration 
by a conventional primary component regression (PCR) and 
partial least squares regression (PLS). Secondly, SVM method 
was applied to make a nonlinear discriminant calibration model 
for "Pulse glucometry." Our results show that the regression 
calibration model based on the support vector machines can 
provide a good regression for the 101 paired data, in which the 
BGLs ranged from 89.0-219 mg/dl (4.94-12.2 mmol/l). The 
resultant regression was evaluated by the Clarke error grid 
analysis and all data points fell within the clinically acceptable 
regions (region A: 93%, region B: 7%). The discriminant  
calibration model using SVMs also provided a good result for 
classification (accuracy rate 84% in the best case).  

I. INTRODUCTION 
EASUREMENT of blood glucose concentration (BGL) 
has long been considered as important for screening in 

diabetes, diabetes management, pre-diabetes management 
and so on. For diabetes management in particular, frequent 
measurement of BGL is necessary [1], thus, many portable 
BGL instruments have appeared in the market. However, 
current instruments suffer from several problems. Almost all 
BGL monitors are based on withdrawal of blood samples 
with small needles or lancets. The user must puncture their 
skin and squeeze the surrounding tissue to draw blood out. 
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Because frequent monitoring is essential, the repeat 
procedure of skin puncturing becomes painful and 
troublesome and, furthermore, can cause an infection. 
Although a non-puncturing type of BGL monitor, the 
GlucoWatch Biographer, (using iontophoresis to draw 
glucose molecules via skin), has been approved by the FDA, 
its measurement procedure can still cause skin irritation after 
repeated application [2]. Therefore, overall, it has to be said 
that there is still an important unmet need for a truly 
non-invasive technique that will allow frequent, convenient 
and safe BGL monitoring. As the search for such a technique 
continues it goes without saying that the gold standard for 
BGL measurement will be based on analysis of a venous 
blood sample obtained by invasive methods. 

In order to obtain physiological variables non-invasively, in 
vivo optical methods using specific parts of the 
electromagnetic spectrum have been studied and applied up 
to now and further methods are still being proposed [3]–[5]. 
We have focused attention on in vivo spectrophotometric 
measurement in living tissues, with analysis to obtain 
parameters related to blood including blood glucose. Among 
our developments, we have recently reported a novel art 
named "Pulse Glucometry", that is based on very high speed 
near infrared spectroscopy for BGL monitoring without any 
invasion [6]–[8]. 

In general, in vivo and in vitro spectroscopic analysis, 
including "Pulse glucometry", have utilized multivariate 
calibration models that are constructed by simple multiple 
linear regression (MLR) or multiple regression based scheme, 
such as Partial Least Squares Regression (PLS) and Principal 
Component Regression (PCR) [9]. MLR, PLS and PCR are 
generally used for pure linear calibration model or 
linearly-transformable (nonlinear) calibration. Recently, 
through developments in the field of multivariate statistical 
analysis, a kernel-based method has come up in the last 
decade with the emergence of the Support Vector Machines 
(SVMs) including the kernel trick [10], [11]. The kernel trick 
is a method for converting a linear classifier algorithm into a 
nonlinear one. The SVMs method is currently regarded as 
one of the strongest methods of supervised learning applied to 
classification and regression. 

In this paper, we describe an attempt to apply three 
methods for calibration; PCR, PLS and SVMs, to "Pulse 
glucometry" to obtain a multivariate calibration regression 
models. Secondly, nonlinear discriminant analysis using 
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SVMs are attempted to "Pulse glucometry."  

II. METHODS 

A. Pulse Glucometry 
The previously developed and reported method of "Pulse 

Glucometry" is based on the application of very fast 
spectrophotometric analysis in a body tissue segment. 
Photoplethysmograms exhibiting cardiac-related blood 
volume pulses are collected for a number of narrow-bands of 
radiation over a broad spectrum. In our experimental setup, 
the measurement system consisted of, a light source (halogen 
lamp: maximum power 150 W), an optical fiber of 10-mm 
diameter for the incident radiation and a single fiber of 
1.2-mm diameter for collecting the transmitted radiation, a 
spectrometer (polychromator, M25-TP; Bunkoh-Keiki Co. 
Ltd., Japan), a linear, liquid nitrogen cooled (−50 to −100 °C), 
InGaAs photodiode-array (multi-photodetector, OMA V: 
512-1.7(LN); Princeton Instruments Co., USA), and a 
conventional personal computer with an appropriate interface. 
Using this system, optical transmittance spectra in the 
wavelength range 900 to 1700 nm can be measured with a 
resolution of 8 nm and 16-bit digitization. The maximum 
spectrum sampling speed achievable is 125 spectra per 
second with this instrument, and in this experiment described 
here we adopted a speed of 100 spectra per second.  

In this study, transmittance spectra derived from a fingertip 
of an index finger were collected from 10 healthy adult 
volunteers (22 to 59 years old; 8 males and 2 females). 
Informed consent was obtained from each subject prior to the 
experiment. Oral glucose tolerance tests (OGTT) were 
carried out in these subjects in order to create varying BGLs.  
Immediately after obtaining each Transmittance spectrum, 
blood samples (about 3 ml) were collected from the cephalic 
vein of the forearm and analyzed chemically to obtain the 
actual BGL. 

From the time series of transmittance spectra obtained by 
this procedure optical density change (differential optical 
density) at wavelength λ (ΔODλ) can be derived, as:. 

( )
( )2

1

tI
tIOD λ

λ
λ =Δ                                                              (1) 

where Iλ(t) is measured radiation intensity at wavelength λ, 
time t. 

In this experiment, to determine timing point during the 
cardiac cycle use was made of the pulsatile component 
superimposed on the transmitted radiation intensity [6], Thus, 
time t1 is arranged to correspond with the diastolic phase and 
t2 should correspond with the systolic phase. Then, 
differential spectra over the wavelength 900 to 1700 nm were 
obtained in each measurement. 

B. Multivariate calibration regression models and 
discriminant models 
Three regression models; Primary Component Regression 

(PCR), Partial Least Squares Regression (PLS), and Support 
Vector Machines Regression (SVMsR) were attempted to 
create multivariate calibration models to relate differential 
optical density spectra to measured BGL employed as the 
teaching data. For learning of ANN, quasi-Newton method is 
applied with weight decay. To implement the procedure, the 

software "R" version 2.6.0 and the kernlab module version 
08-2 for "R" were used on a conventional personal computer 
(Dimension 9100 with a CPU Pentium D 830 and 2GB 
memory, DELL Inc.) [12], [13]. Before calculations to obtain 
a calibration model were performed, the differential optical 
spectra were filtered and normalized, in a manner already 
reported [6] by using the software MatlabTM version 7.x. 
Then spectra with artifact were separated by observation, and 
rejected from the data set. In order to obtain the resultant 
calibration model, parameters on calculations were searched 
repeatedly. For finding the resultant parameters, any 
sophisticated search algorithm was not applied. 

Afterwards, a nonlinear discriminant models using SVM 
were attempted for the same data sets. Firstly, the measured 
BGL levels were classified based on the criterion of diabetes 
screening of fasting blood sugar (case of FBS), and data were 
classified to "Normal" class, "Impaired Fasting Glycaemia" 
class and "Diabetes Mellitus" class. Then, a nonlinear 
discriminant analyses were applied to make discriminant 
calibration models. Secondly, those were also assumed as 
2-hour postprandial blood sugar (case of 2 hour-PC) and data 
were classified to "Normal", "Impaired Glucose Tolerance" 
and "Diabetes Mellitus" classes. Then, another nonlinear 
discriminant analyses were applied. 

III. RESULT AND DISCUSSIONS 
101 sets of data for the differential optical density spectra 

and the measured BGLs over the range of 100.7-246.3 mg/dl 
(5.59-13.7 mmol/l) were obtained and used as the data set to 
create a calibration model. Fig 1 shows an example of 
obtained differential optical density spectra. The calibration 
models were evaluated by 5-fold cross-validation. Finally, 
resultant parameters for each methods were obtained as 
follows. For PCR, the 1st to 20th principal components were 
applied. For PLS, the number of latent variable is 15. For 

Fig. 1.  An example of the differential optical density spectrum that was 
obtained from a subject with BGL level 116.5 [mg/dl]. The optical 
density spectrum was used as a part of data set for constructing multi 
vitiate calibration models. 
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SVMsR, the ANOVA RBF (Radial Basis Function) kernel 
with degree one was used in training and ε in Vapnik's 
insensitive-loss function is 0.123. The resulting estimated 
BGLs versus measured BGLs are plotted on a Clarke error 
grid shown in Fig.2. As an be seen in Fig.2, almost all data 
points are within clinically acceptable regions: the region A 
and B in each calibration [14]. Among them, SVMsR 
calibration provided the best plot distributions. Therefore, it 
might reasonably be suggested that SVMsR can be used for 
constructing multivariate calibration models as part of the 

procedure of implementing "Pulse Glucometry." 
Secondly, nonlinear discriminant models were attempted 

in same data sets. The calibration models were also evaluated 
by 5-fold cross-validation. Table 1 shows the result provided 
by SVMs classification. The results in the case of FBS were 
considered as good classifications. 

By the observation of Fig.2, it can be said that PCR 
provided the worst regression. However, despite the result, 
the superiority of regression by SVM over the conventional 
method PLS is not still clear. However, PLS assumes a linear 
model. If nonlinear elements are present in a system then PLS 
based calibrations cannot avoid errors originating from 
nonlinearity, at least in principle. Meanwhile, in theory, 
SVMsR can be considered as solvers of the problem with 
nonlinearity. Thissen et al. attempted to compare the 
performance of SVMs with conventional PLS for spectral 
regression applications in the chemometrics field and 
reported superiority of SVMs over PLS [15]. 

It might be difficult to expect that non-invasive blood 
glucose measurement could achieve accuracy comparable to 
invasive one. From a practical application standpoint, 
discriminant type calibration (providing qualitative nature) 
may be applicable instead of regression type calibration 
(providing quantitative blood glucose level). In this paper, we 
tried to apply nonlinear discriminant analyses to provide 
qualitative information about blood glucose level and provide 
fairly good result. From the results shown on this paper, it is 
difficult to discuss it result because of not-uniform 
distribution of BGL of dataset. Additional data will be 
required to establish the discriminant type calibration. 

Furthermore, the system will eventually need to be 
miniaturized into a portable device like conventional pulse 

 
Fig. 2.  Result of cross validations plotted on Clarke Error Grid; 
subplot (A) shows result by using PCR,(B) shows by PLS, and (C) 
shows by SVMsR 

TABLE I 
RESULT OF DISCRIMINANT CALIBRATION USING ANN 
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oximeter. Then only a several LEDs should be applied in the 
device. To find the most effective wavelengths of LED 
emitting, more data analyses are required. Stepwise model 
selection by AIC could be used for the purpose. 

IV. CONCLUSION 
A recently proposed non-invasive in vivo BGL optical 

measurement technique named "Pulse Glucometry" was 
combined with three types of regression analyses (PCR, PLS, 
and SVMsR) and a discriminant analyses using SVMs to 
construct multivariate calibration models. Good regression 
and classification were obtained using SVMs methods. These 
data provide preliminary evidence that Pulse Glucometry 
with SVMsR can be applied effectively to measure BGLs 
non-invasively and a discriminant type calibration may be 
achieved by using SVMs. 
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