
  

  

Abstract—In order for the functionality of an upper-limb 
prosthesis to approach that of a real limb it must be able to, 
accurately and intuitively, convey sensory feedback to the limb 
user. This paper presents results of the real-time 
implementation of a ‘biofidelic’ model that describes 
mechanotransduction in Slowly Adapting Type 1 (SA1) afferent 
fibers. The model accurately predicts the timing of action 
potentials for arbitrary force or displacement stimuli and its 
output can be used as stimulation times for peripheral nerve 
stimulation by a neuroprosthetic device. The model 
performance was verified by comparing the predicted action 
potential (or spike) outputs against measured spike outputs for 
different vibratory stimuli. Furthermore experiments were 
conducted to show that, like real SA1 fibers, the model’s spike 
rate varies according to input pressure and that a periodic 
‘tapping’ stimulus evokes periodic spike outputs.  

I. INTRODUCTION 
ccording to the National Limb Loss Information Centre 
there are 1.9 million amputees living in the United 

States of America with an estimated 12 500 new upper limb 
amputations occurring every year [1]. Consequently, there 
exists a large need for an upper limb prosthesis which can 
match the performance of a real limb. Large advances have 
been made in the field of decoding neural signals to predict 
arm and finger movements [2-5], but the success in 
providing intuitive sensory feedback to the limb user has 
been limited. 
 
In the intact limb, the glabrous skin of the fingertips is 
largely responsible for conveying tactile feedback during 
normal hand movements. The skin is innervated by three 
types of afferent nerve fibers: slowly adapting type 1 (SA1), 
rapidly adapting (RA) and Pacinian (PC) fibers. Each of 
these fibers conveys different information about the 
deformation of the skin to the brain. SA1 fibers respond to 
low frequency vibrations (taps) and pressure, and convey 
form and texture information. RA fibers convey information 
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necessary for grip control and respond to intermediate 
frequencies and to motion across the 
skin.  PC fibers respond to high frequency vibrations and  
convey information about distal events such as when sensing  
through a tool [6]. For a review of these fibers see [7].  
 
To provide intuitive sensory feedback to a prosthetic limb 
user, stimulation of the sensors should activate the above 
fibers in the manner in which a stimulus to the intact hand 
would. However, most prosthetic technologies do not allow 
for this. Instead sensory feedback, if present at all, is 
provided through the use of tactors. In this feedback 
modality, tactile sensations are encoded and then applied to 
the user’s skin through mechanical stimulation, in a region 
that has normal or near normal sensory capacity. In targeted 
sensory reinnervation, where nerves that normally innervate 
the hand are remapped to the skin of the residual limb, 
tactor-based feedback has the potential to elicit sensations 
projected to the phantom of the hand [8]. However, in most 
cases tactor-based feedback is unnatural and the user has to 
learn to associate the applied stimulus with the missing limb 
[9]. Furthermore, the mechanoreceptor density of the 
reinnervated skin is lower than that of the fingers so the 
resolution of the feedback is lower when applied to the 
former than if it emanated from the latter. 
 
An alternative method is to stimulate the peripheral nervous 
system directly. Vallbo et al. [10], and Ochoa and Torebjork 
[11] have shown that stimulation of individual afferent fibers 
evokes a percept that is referred to the location of the 
afferent’s receptive field and corresponds to the type of 
afferent stimulated. For example activating SA1 afferents 
with a continuous stimulus results in the sensation of 
sustained skin pressure. Peripheral nerve stimulation thus 
elicits more natural sensations than do other methods [12]. 
Three major difficulties, however, hamper this approach. 
The first is the ability to isolate individual afferent fibers for 
stimulation, the second is the ability to evoke a single action 
potential in the afferent fiber and the last is deciding on the 
temporal pattern of activation to apply to the nerve fiber 
given a stimulus. Advances in microelectrode arrays such as 
the Utah slant array [13]have helped address the first two 
issues. The third issue can be addressed by assuming that 
producing the same action potential sequence in the fiber 
that would be produced in the intact limb by the stimulus 
will elicit natural percepts of the stimulus. We have 
developed a model of the SA1 system that can accurately 
predict spike times for an arbitrary input stimulus [14]. 
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These spike times can then be used as the stimulation pattern 
for sensory feedback. 
 
The remainder of this paper describes the real-time 
implementation of this model in a Virtual Integration 
Environment (VIE) [15] and the coupling of this model with 
external sensors.  

II. METHODS 

A. The Virtual Integration Environment 
The Virtual Integration Environment (VIE) was developed 
by the Johns Hopkins University Applied Physics 
Laboratory (Laurel, MD, USA) for the prototyping of 
algorithms for the control of a 22 degree of freedom 
prosthetic arm [15]. The VIE is implemented using the 
Simulink toolbox for MATLAB 2008b (Mathworks Inc, 
Natick, MA, USA). The control algorithms for the arm are 
developed in Simulink and then compiled to run on a real-
time PC (xPC). The xPC controls the virtual limb and can 
interact with external sensors through a NI 6040E ADC PCI 
card.  The limb model incorporates limb dynamics and 
kinematics which were designed to mimic the mechanical 
and physical properties of the limbs being developed for the 
DARPA Revolutionizing Prosthetics 2009 project. The limb 
consists of a comprehensive model of the human arm 
developed using MusculoSkeletal Modeling Software 
(MSMS) [16, 17]. The VIE physics engine allows for basic 
interactions between the arm and objects. These interactions 
could be extended to provide a virtual haptic environment. 
The virtual arm and environment could then be used to 
perform closed loop motor-decoding/sensory-encoding 
experiments. For a more detailed description of the VIE see 
[15]. For the experiments described here, the xPC was 
configured to run with a step size of 1ms. 

B. The model 
Only a brief description of the model will be given as it has 
previously been discussed in  [14]. The model consists of a 
rectification and filter stage followed by a noisy, leaky 
Integrate and Fire (IF) neuron. The model is driven by 
position and its first derivative, velocity, which have been 
found to be sufficient to predict responses. Because the IF 
neuron allows only for linear transforms of its inputs, the 
position and velocity inputs are separated into their positive 
and negative components, allowing for separate linear 
transforms on each component. Each of these four 
components is then filtered and the outputs of the filters are 
summed to form the input current for the IF neuron.  
Gaussian noise is also injected into the neuron at this stage. 
When the membrane potential ܸ reaches a threshold 
( ௧ܸ௛௥௘௦௛ ൌ 1ሻ then an action potential is produced (ܵ݁݇݅݌ ൌ
1ሻand the membrane voltage is reset ሺܸ ൌ ௥ܸ௘௦௘௧ ൌ 0ሻ. The 
differential equations governing the dynamics of the IF 
neuron were written as difference equations to ease the 
computational load on the xPC. The dynamics are as 
follows: 
 
݂݅ ܸሾିݖଵሿ ൐ ௧ܸ௛௥௘௦௛ ݄݊݁ݐ  
               ܸሾݖሿ ൌ ሺܸሾିݖଵሿ െ ௟ܸ௘௔௞ሻܦଵ ൅ ௟ܸ௘௔௞ ൅ ଶܦ௡௘௧ܫ ൅  ܰߪ
݁݇݅݌ݏ                ൌ 1 
  ݁ݏ݈݁

ܸሾݖሿ ൌ ௟ܸ௘௔௞ሺ1 െ ଵሻܦ ൅ ௥ܸ௘௦௘௧ܦଵ ൅ ଶܦ௡௘௧ܫ ൅  ܰߪ
݁݇݅݌ݏ              ൌ 0  
݁݊݀  
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Figure 1: (a) Information flow through the prosthetic system. Motor 
decoding algorithms will use efferent nerve (red) signals to predict the 
desired movement of the limb. Sensory feedback will be encoded using 
biofidelic algorithms and transmitted to the brain through afferent nerve 
(green) stimulation (Image courtesy of JHU-APL). This feedback is 
envisioned to be implemented as follows: arrays of electrodes will be 
implanted into the residual ulnar and median nerves of the amputated 
arm.  Next, fibers stimulated by the electrodes will be classified by type 
and projected field. Finally, the temporal pattern of stimulation for SA1 
afferents will be generated through the use of the real-time model 
described in this paper. (b) Block diagram of the experimental setup 
using the VIE system (c) Leaky and Noisy Integrate and Fire Neuron 
model. The model accepts a displacement stimulus. This stimulus along 
with its first derivative are split into their positive and negative 
components and filtered. The summation of the filtered components then 
forms the input to the IF neuron. 
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ଵܦ ݁ݎ݄݁ݓ ൌ ݁ିభ
ഓ ܽ݊݀ ܦଶ ൌ ߬ ቀ1 െ ݁ିభ

ഓቁ  
௡௘௧ܫ ݀݊ܽ ൌ ௜௡ܫ ൅   ௣௦ܫ
 

௟ܸ௘௔௞ is the leak potential of the neuron, ܰ is the Gaussian 
noise, ߪ is the standard deviation of the noise,  ܦଵ is the 
decay of the membrane voltage and ܦଶ is the decay of the 
contribution of ܫ௡௘௧ to the membrane voltage, ߬ is the 
membrane time constant in ms. ܫ௣௦ is a post spike inhibitory 
current accumulated over all past spikes and ܫ௜௡ is the input 
current from the filtering stage, given by: 

        

ሻݖ௜௡ሺܫ                    ൌ ∑ ሺܪ௜
ାሺݖሻ כ ௜ݕ

ାሺݖሻ ൅ଵ
௜ୀ଴ ௜ܪ

ିሺݖሻ כ ௜ݕ
ିሺݖሻሻ 

        
       
Where ݕ௜

ାሺݖሻ and ݕ௜
ିሺݖሻ are the positive and negative 

components of the ݅௧௛ derivative of position and ܪ௜
ାሺݖሻ and 

௜ܪ
ିሺݖሻ are the corresponding linear filters. Each filter has 60 

coefficients and so a buffer of 60ms was added to the front 
of the model to ensure correct filtering during real-time 
operation. The parameters for the above model were found 
using an approach developed by Paninski and Pillow [18, 
19]involving density propagation techniques. 

C. Force-Displacement Conversion  
Because the sensors on a prosthetic arm are more likely to 
sense force than displacement an additional block was added 
to the Simulink model to transform a sinusoidal input force 
into the corresponding displacement.  The conversion factor 
was calculated by measuring the force required to cause 
different indentation amplitudes to a Rhesus Macaque’s 
distal finger pad at frequencies of 1, 5, 10, 25, 50 and 100Hz 
(see Figure 2a). The slope (m) of each of the force-amplitude 
curves can then be used to find the displacement amplitude 
of the skin as follows: 

ݐ݈݊݁݉݁ܿܽ݌ݏ݅ܦ ൌ ݉ ൈ  ݁ܿݎ݋݂

D. Testing the model 
Four input types were used to test the model. The first 
involved applying vibratory stimuli to the model and 
comparing the model results to recorded spike trains (from 
an anesthetized Rhesus macaque) evoked using the same 
stimuli (The afferent fiber from which the recordings were 
made innervated the glabrous skin of the hand. For a full 
description of the experimental procedure see [20]).The 

(b) 

(a) 

Figure 2: (a) Force required to produce a given indentation into the finger 
pad of a monkey at varying frequencies. (b)  Predicted (blue) and 
measured (red) spike trains evoked by 4 vibratory stimuli (black trace) (c) 
Predicted response (blue) and measured response (red) to a 10Hz sinusoid 
with a zero-to-peak force of 8grams (which corresponds to a zero-to-peak 
displacement of 130݉ߤ). Each row of the measured or predicted 
responses corresponds to the responses evoked by successive applications 
of the same stimulus (to the skin or the model). (d) Model responses 
when the load cell is tapped repeatedly (e) Predicted response to varying 
pressures applied to the load cell. The black trace is the load cell output. 
The number of spikes generated by each pressure stimulus is indicated 
next to the corresponding force deflection. The model response (spike 
rate) increases with force as is expected given the nature and function of 
SA1 afferent fibers  
 
In figures (b) – (e) the predicted spike trains have been shifted back by 
the buffering time (60ms) to align the predicted data with the measured 
data and the stimuli.

(e) 

(c) 

(d) 
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second stimulus was a force input consisting of a 10Hz 
sinusoid with amplitude of 8 grams applied to the model 
through the ADC. This input was generated using an HP 
33120A Function Generator. The force conversion outlined 
above was used to transform the force into displacement and 
the results of the model were compared to the recorded spike 
trains as in the previous experiment. The third and fourth 
inputs used the load cell to characterize the simulated 
response to taps and to various levels of pressure.  

III. RESULTS AND DISCUSSION 
Figure 2(a) shows preliminary results from the force-
displacement conversion experiment. It can be seen that at 
each frequency the force-displacement relationship is linear 
allowing a very simple transfer function to be used. 
Furthermore the slope is approximately independent of 
frequency for frequencies between 1 and 50Hz but increases 
abruptly at 100Hz. We are currently investigating the 
relationship between force and displacement more 
systematically and across a wider range of stimulus 
conditions. Figure 2(b) shows the responses of an SA1 
afferent to 4 vibratory stimuli along with the responses 
predicted by the model. Model predictions match the 
measured responses almost perfectly, thereby bolstering the 
assertion that the model outputs are in fact ‘biofidelic’ (The 
average discrepancy between the model and the recorded 
spike trains is 0.2ms. For details see [14]). Figure 2(c) shows 
the predicted and measured responses to a simple sinusoid. 
The responses are closely matched showing that the model 
still has excellent performance when an external force input 
is applied. As mentioned above a more complete analysis of 
the relationship between force and displacement needs to be 
conducted before more complex force inputs can be tested. 
Whilst there are no corresponding neurophysiological data to 
which to compare the results shown in Figures 2(d) - (e), 
these data show that the simulated SA1 afferent exhibits two 
critical properties observed in vivo of afferents of its type. 
Figure 2(d) shows that the simulated afferent responds to 
periodic taps applied to the load cell by firing periodic bursts 
of action potentials, as do SA1 afferents when their receptive 
fields are stimulated in this fashion. Figure 2(e) shows that 
the magnitude of the response of the simulated afferents (i.e. 
the number of spikes) to pressure stimuli applied to the load 
cell depends on the magnitude of the applied pressure. The 
simulated afferent thus conveys information about pressure 
in the same way as an SA1 afferent innervating the glabrous 
skin would.  

IV. CONCLUSIONS 
In the present study we develop a real-time algorithm for 
encoding sensory feedback which can be used for peripheral 
nerve stimulation in neural prostheses. Because this model 
was developed within the VIE, the algorithm can be readily 
compiled to an embedded device for use once sensor and 
nerve stimulation technologies have sufficiently evolved. 
Analogous models are currently being developed to simulate 
the responses of the other types of mechanoreceptive and 
thermoreceptive afferents innervating the skin.  
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