
  

  

Abstract—Effective evaluation of potential neuroprotective 
interventions for Parkinson’s disease (PD) requires precise 
quantification of the motor signs associated with this disease.  
We have created a protocol that uses force tracking in a 
simultaneous task paradigm to quantify the fine motor control 
deficits in individuals with PD.  We have used this protocol to 
collect data from 30 individuals with early to moderate PD and 
30 age-matched controls.  Based on this data, we computed 60 
variables.  We generated all possible combinations of three of 
these variables, and we then computed the classification 
accuracy of a support vector machine (SVM) trained on each 
variable combination.  We were able to correctly classify 85% 
of subjects as with or without PD.  We found that root-mean-
square error variables were the most important features for 
classification and that utilizing a simultaneous task paradigm 
improves classification accuracy.  

I. INTRODUCTION 

ANY research groups are trying to develop 
neuroprotective interventions for Parkinson’s disease 

(PD), interventions that slow or halt the progress of the 
disease.  However, testing the effectiveness of potential 
neuroprotective interventions requires sensitive, precise 
ways to diagnose the disease and measure its progression.  
Various types of imaging have been proposed as diagnostic 
and progression biomarkers for PD [1, 2], but the correlation 
between imaging and functional measures is low [3].  
Robotic and sensing technology can enable quantitative 
assessment of the motor signs of PD in order to promote 
more complete evaluation of potential neuroprotective 
interventions [4-6]. 

We have developed an experimental protocol that uses 
high-precision force/torque sensors to measure an 
individual’s performance during a force tracking tack.  Our 
assessment is unique in that we utilize a simultaneous task 
paradigm in which the user performs a cognitive task 
(counting down from 100) while performing the force 
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tracking task.  Our previous work has shown that the 
simultaneous cognitive task causes greater deterioration in 
the force tracking performance for individuals with PD 
relative to age-matched control subjects [7].  In addition, we 
have shown that performance on our assessment can account 
for 76% of the variance of scores on the Unified Parkinson 
Disease Rating Scale [8]. 

This paper describes the classification of individuals as 
with or without PD based on our experimental protocol.  We 
used the force information measured during the protocol to 
compute 60 variables.  We generated all possible 
combinations of three of these variables, and we then 
computed the classification accuracy of a support vector 
machine (SVM) trained on each variable combination.  
Using this method, we estimated the classification accuracy 
we can obtain using our experimental protocol and identified 
the features important for classification of individuals as 
with or without PD. 

II. METHODS 

A. Subjects 

Thirty individuals with PD participated in this experiment.  
Each individual had a Hoehn-Yahr score between I and III 
(median H-Y score 2, mean H-Y score 2.03) [9].  All 
individuals remained off medication for PD for 12 hours 
before completing the testing protocol.  Thirty age-matched 
control subjects also participated in this experiment.  These 
individuals had no history of neurological disease or injury. 

B. Experimental Protocol 

The experimental environment for this experiment 
included two 6-axis force/torque NANO 17 sensors (ATI 
Industrial Automation).  The sensors have a resolution of 
0.003 N for force.  The sensors were mounted to a portable 
platform using custom-made hardware (Fig. 1).  The user 
exerted force on the sensors using the index finger and 
thumb.  The mean force exerted by the user was shown on a 
computer screen, and the user modulated his or her force to 
track a target wave.  Two target waveforms were used, a sine 
wave with a period of 7.5 seconds and pseudorandom 
waveform (Fig. 2).  The subject tracked each waveform for 
three minutes.  During the first minute, the subject tracked 
the target force.  During the second minute, the subject 
tracked the target force while simultaneously counting down 
from 100 by 1.  During the third minute, the subjects tracked  
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Fig. 1.  The experimental environment.  The subect grasped the force/torque 
sensors with the index finger and thumb and modulated the grip force to 
track a target wave shown on the computer screen. 

 
Fig. 2.  An example of the visual feedback shown on the computer screen.  
The subject was shown the target wave, in this case a pseudorandom wave, 
as well as a 12.5 s history of his or her tracking performance.  The current 
target force and subject response were shown in the horizontal center of the 
screen.  This screen shot also shows the visual prompt to count down from 
100 by 3 that was displayed during the third minute of tracking. 
 
the target force while simultaneously counting down from 
100 by 3.  Each subject tracked each target waveform (sine 
or pseudorandom) with both the right and left hands.  Thus, 
each subject completed a total of four trials.   

C. Data Analysis 

We considered a number of summary variables with the 
goal of determining which variables best separated 
individuals with and without PD.  First, we computed the 
power spectral density for the subject response and 
calculated the integral of this function between 2 and 8 Hz.  
This variable quantified the tremor present in an individual’s 
performance.  The 2-8 Hz window contains the range of 4-5 
Hz that is typical of Parkinsonian tremor.  After computing 
the tremor integral, we filtered the subject response using a 
2nd order low-pass Butterworth dual-pass filter with a cut-off 
frequency of 2 Hz.  All other summary variables were 
computed from the filtered data.   

After filtering the data, we calculated the root-mean-
square error (RMSE) between the target wave and the 
subject response.  Because case and control individuals were 
expected to differ most in tracking performance at the 
extremes of the target waveforms, we also computed the 
RMSE error for a 1 s window centered on each peak and 
valley of the sine wave target.  The extremes of the 

pseudorandom wave were defined as periods during which 
the target force was greater than 5 N or less that 3.2 N; the 
RMSE was computed for each of these periods.  The final 
summary variable that we computed from the filtered data 
was the lag between the target waveform and the subject 
response.  The lag was computed as the time period that 
maximized the cross-covariance between the target and the 
response.   

The mean of each summary variable was computed for 
each cognitive load condition (no counting, counting down 
by 1, counting down by 3) for each target waveform (sine or 
pseudorandom) and each hand.  This gave us a total of 60 
variables (5 summary variables x 3 cognitive load conditions 
x 2 target waveforms x 2 hands).  Because the motor signs of 
PD are typically asymmetrical, we divided the data collected 
for both hands based on the side of better/worse 
performance, rather than based on the right/left side.  The 
side of better performance was the side with the lower mean 
RMSE error over both the sine and pseudorandom targets.  
The value of each summary variable in minute 1 was 
subtracted from the value of that summary variable in 
minute 2 and minute 3. 

Once we computed these variables, we examined which 
subset of variables could best classify individuals as with or 
without PD.  The classification technique we used was a 
linear support vector machine (SVM) [10].  The SVM is a 
mathematical function that uses a vector of variables (the 
feature vector) to classify an individual as with or without 
PD.  It can be thought of as an automated way of finding the 
surface that divides the feature vectors of PD and control 
subjects while maximizing the distance of each group from 
the dividing surface.  In the simplest terms, the SVM finds 
the most reliable way to divide case from control individuals 
based on the elements of the feature vector.  The SVM is 
created by “training” on a data set of individuals whose 
classification (PD or control) is known.  Because the SVM 
function depends upon the data used for training, the 
classification accuracy of the SVM must be measured using 
an independent test set.   

We generated all 34,220 possible combinations of three 
variables that could be chosen from our 60 variables.  For 
each combination, we created an SVM using that subset of 
variables as the feature vector.  We used leave-one-out 
cross-validation to determine the classification accuracy of 
the SVM corresponding to a particular combination of 
variables [10].  Each individual in term was considered to be 
the test set.  The SVM was trained based on the data from 
every other individual (59 subjects) and was then used to 
classify the individual used as the test set.  The process was 
repeated for all case and control individuals.  The number of 
case and control individuals correctly classified was 
computed for every combination of variables, and we 
determined which combinations correctly classified the 
greatest number of individuals.  All analyses were conducted 
in Matlab. 
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III. RESULTS 

Two combinations of variables were able to correctly 
classify 85% (51/60) of the individuals who participated in 
the experiment.  The following subset of variables correctly 
classified 25/30 case subjects and 26/30 control subjects: 
RMSE at peaks for sine wave/minute 1/side of worse 
performance; RMSE for pseudorandom wave/minute 2/side 
of worse performance; and RMSE at peaks for sine 
wave/minute 3/side of better performance.  These variables 
are shown in Fig. 3-5.  The following combination of 
variables correctly classified 24/30 case subjects and 27/30 
age-matched controls: RMSE at peaks for sine wave/minute 
1/side of better performance; RMSE for pseudorandom 
wave/minute 2/side of worse performance; and RMSE for 
sine wave/minute 3/side of better performance. 

Three combinations of variables were able to correctly 
classify 83.3% (50/60) of the individuals who participated in 
the experiment.  All of these correctly classified 24/30 case 
subjects and 26/30 control subjects.  The first combination 
of variables was RMSE at peaks for sine wave/minute 1/side 
of worse performance; RMSE for pseudorandom 
wave/minute 1/side of worse performance; and RMSE at 
peaks for sine wave/minute 3/ side of better performance.  
The second combination of variables was RMSE at peaks for 
sine wave/minute 1/side of worse performance; RMSE for 
sine wave/minute 1/side of better performance; and RMSE 
for sine wave/minute 2/side of better performance.  The third 
combination was RMSE at peaks for sine wave/minute 
1/side of better performance; RMSE; RMSE for sine 
wave/minute 3/side of better performance; and lag for 
pseudorandom wave/minute 2/side of better performance. 

IV. DISCUSSION 

A. Performance of SVM Classification 

We observed a wide range of fine motor abilities for both 
case and control subjects in this study.  Some individuals 
were recently diagnosed with PD, while in others the disease 
was much more advanced.  The range of motor abilities for 
age-matched control subjects was also quite large, as 
demonstrated by the plots in the results section.  In fact, 
since more than 60% of the neurons in the basal ganglia are 
destroyed before clinical signs of PD are observed [2], we 
cannot be sure that all control subjects were without 
neurological impairment.  As the above plots show, there 
was substantial overlap between case and control individuals 
for all variables.  We choose to use the SVM method for 
classification because the boundary separating case from 
control individuals is chosen based only on those individuals 
who lie close to this dividing plane (the individuals 
determining the boundary are termed the support vectors).  
The classification boundary is not influenced by individuals 
who lay far it, individuals are relatively easy to classify as 
case or control.  In choosing the SVM technique, we hoped 
that this characteristic would enable us to obtain good  
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Fig. 3.  The RMSE at the peaks of the sine wave for minute 1 (tracking with 
no counting task) for the side of worse performance.  Each point represents 
the RMSE for a single individual. 
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Fig. 4.  The RMSE for the pseudorandom wave for minute 2 (tracking while 
counting down by 1) for the side of worse performance.  Each point 
represents the RMSE for a single individual. 
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Fig. 5.  The RMSE at the peaks of the sine wave for minute 3 (tracking 
while counting down by 3) for the side of better performance.  Each point 
represents the RMSE for a single individual. 
 
classification performance despite the overlap in motor 
abilities between case and control subjects.  In addition, this 
method has yielded good empirical results for previous 

216



  

applications.  For example, Jiang et al. [11] used SVM to 
classify the degree of liver fibrosis in individuals with 
Hepatitis C with 87% accuracy.  Van Calster et al. [12] used 
SVM to successfully classify ovarian tumors as benign or 
malignant.  

The best SVM had a classification accuracy of 85% 
overall, 83.3% for case subjects, and 86.7% for control 
subjects.  While not perfect, we feel this is a respectable 
performance, given the small size of our data set and the 
substantial overlap in motor abilities between case and 
control subjects. 

B. Selected Features 

While our relatively small number of subjects limits us 
from a data mining perspective, this small sample size made 
it computationally feasible to exhaustively search all 
possible combinations of three variables in order to select 
the features that best predict whether or not an individual has 
Parkinson’s disease.  We identified five subsets of variables 
that led to the high classification accuracy; examination of 
these variables thus identified as important can inform the 
future work of our group and others interested in the use of 
technology to quantify neurological motor deficits.  
Variables that were included in the five best subsets were 
almost exclusively RMSE variables, including the overall 
RMSE for both sine and pseudorandom targets and the 
RMSE at the peaks for the sine target.  Four of the five best 
subsets included variables from both hands (side of better 
performance and side of worse performance).  All five of the 
best subsets include variables from different minutes of 
tracking (different cognitive load conditions).  Three of the 
five best subsets contained variables from all three cognitive 
load conditions.  Therefore, we conclude that the RMSE is a 
useful variable for distinguishing individuals with and 
without PD, and that utilizing a simultaneous task paradigm 
improves classification accuracy. 

This work is limited by the fact that we searched only 
combinations of three variables.  It is possible that a 
combination of four or more variables might have better 
classification accuracy.  However, preliminary tests showed 
that using combinations of more variables led to overfitting 
due to our limited sample size.  When a larger data set is 
available, we will investigate other methods of variable 
selection.  In addition, the results of SVM should be 
compared to the results obtained with other methods of 
classification.  

C. Future Work 

We have expanded our experimental environment to 
include two haptic robots in addition to the force/torque 
sensors.  This new environment enables us to precisely 
measure the force and position of the index finger and thumb 
as the user interacts with a virtual object.  In particular, we 
will examine the simulated functional task of moving a 
virtual object while maintaining a grip force within certain 
limits (simultaneous motor tasks).  We are currently 
recruiting individuals with early PD to measure the test-

retest reliability of the new experimental protocol.  In 
addition, we wish to compare the current results with our 
ability to classify individuals as with or without PD based on 
the data collected in our new protocol.  Finally, we plan to 
follow individuals longitudinally in order to validate our 
assessment as a measure of progression of the motor signs of 
PD. 
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