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Abstract— We describe a novel algorithm for the prediction
of epileptic seizures using scalp EEG. The method is based on
the analysis of the positive zero-crossing interval series of the
EEG signal and its first and second derivatives as a measure
of brain dynamics. In a moving-window analysis, we estimated
the probability density of these intervals and computed the
differential entropy. The resultant entropy time series were then
inspected using the cumulative sum (CUSUM) procedure to
detect decreases as precursors of upcoming seizures. In the next
step, the alarm sequences resulting from analysis of the EEG
waveform and its derivatives were combined. Finally, a seizure
prediction index was generated based on the spatio-temporal
processing of the combined CUSUM alarms. We evaluated our
algorithm using a dataset of ∼21.5 hours of multichannel scalp
EEG recordings from four patients with temporal lobe epilepsy,
resulting in 87.5% sensitivity, a false prediction rate of 0.28/hr,
and an average prediction time of 25 min.

I. INTRODUCTION

Epilepsy is a common chronic neurological disorder, af-

fecting almost 60 million people around the world [1], and

is associated with recurrent, unprovoked seizures. Epileptic

seizures result from a sudden disturbance of brain function

which is characterized by abnormal discharges of cortical

neurons recruiting neighboring cells into a critical mass.

Medication and surgery fail to completely control seizures

in about 25% of patients [1]. As a result, several studies have

addressed forewarning algorithms for epileptic seizures using

the electroencephalogram (EEG) [2], [3]. Not only would

a reliable seizure prediction procedure enable clinicians to

control seizures by administering the therapeutic agents as

early as possible, it would also improve the quality of life

and safety for patients with epilepsy.

Since the surface EEG is often being affected by different

types of artifacts and noise, most epileptic seizure prediction

algorithms have been derived from analysis of intracranial

recordings [4]–[7]. However, extending the seizure anticipa-

tion techniques to the scalp EEG has been the objective of

research [8], [9] to make them more clinically applicable.

Iasemidis et al. [7] proposed an adaptive seizure predic-

tion algorithm, based on the convergence of the short-term

maximum Lyapunov exponents of the critical electrodes in

the preseizure phase. Applying this method to a dataset of
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intracranial recordings, more than 80% of the seizures were

predicted with an average prediction time of 71.7 min. and

a false prediction rate of 0.16/hr. Analyzing the depth EEG

recordings using the correlation dimension as a measure of

complexity, Lehnertz et al. [4] found that the complexity

dropped prior to the seizure onset and remained significantly

below a specific threshold. In another study [5], a simi-

larity measure was developed for intracranial recordings to

compare the current dynamics with a reference constructed

from a long-term interictal period. The study showed that

the similarity measure decreased during the preseizure period

gradually and reached its minimum value at the ictal phase.

This method was also later applied to the scalp EEG [8].

The phase synchronization between different recording sites

was also studied to anticipate the seizure onset [6], [10].

These studies reported significant changes in synchronization

between EEG channels during the preictal period in most

cases. This enabled prediction of the seizures several minutes

before the onset.

In this paper, we propose an approach to predict epileptic

seizures by analyzing the entropy level corresponding to

the positive zero-crossing intervals in the surface EEG and

its derivatives. In Section II, the details of our method are

described. Section III is devoted to present the results of

this approach. The scalp EEG recordings from four patients

with temporal lobe epilepsy (TLE) were used to evaluate the

method. Finally, the paper is concluded by Section IV with

some directions for future work.

II. METHODS

One scenario which is usually considered to describe the

evolution of partial epileptic seizures maintains that there are

long-term gradual dynamic changes leading to the ictal state.

Indeed, it emphasizes the existence of a preictal state which

can be considered as a transition from the interictal to the

ictal state and is supported by some clinical findings [3]. In

the following paragraphs, details of our method to predict

epileptic seizures based on preictal changes are described.

A. EEG Underlying Dynamics

We propose a real-time, patient-specific prediction algo-

rithm based on a moving-window analysis of scalp EEG

recordings. In this approach, instead of the conventional

time-delay embedding approach [11], the dynamics of EEG

signals are analyzed based on the time intervals between the

successive positive zero-crossings (passing from negative to

positive values) [12], [13]. One of the advantages of this
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approach is its robustness against noise [5]. Accordingly,

since the surface EEG contains different types of noise and

artifacts, this approach removes the noise components to

some extent. Suppose Tm is the time of the mth positive

zero-crossing in an EEG epoch after detrending; then, we can

represent this epoch with a M-dimensional vector defined as

V = [I
1
, I

2
, · · · , I

M
]T where Im = Tm+1 − Tm, m = 1,2, · · ·M,

and M is the total number of intervals. The probability

density function (PDF) of Im in each epoch is then used to

characterize EEG dynamics. We employ the kernel density

estimation [14] as a nonparametric approach to estimate

the PDF of zero-crossing intervals. Given N data points

{x
1
,x

2
, · · · ,x

N
} of an unknown PDF, p(x), the kernel esti-

mator with kernel K is defined as

p̂(x) =
1

Nw

N

∑
j=1

K

(

x− x
j

w

)

(1)

where w is the smoothing parameter, also called the window

width. Choosing a Gaussian kernel in this work, we estimate

the window width by

w = σ

(

4

3N

)1/5

(2)

where σ is the estimated standard deviation of data. This

equation results in an optimal window width for a normal

PDF [14] and a suboptimal estimation for non-Gaussian

distributions.

In addition to the EEG signal, we also include the first

and second derivatives of EEG in characterization of the

underlying mechanisms. Empirically, we have found that

preictal changes of the distribution of positive zero-crossing

intervals are more pronounced in EEG derivatives than EEG

in some cases. In fact, by including the first and second

derivatives of EEG, we also analyze the PDF of intervals

between the extrema (1st derivative) as well as saddle points

(2nd derivative). To reduce the effect of noise and artifacts

and improve the specificity of the method, it is first neces-

sary to define a range of acceptable positive zero-crossing

intervals (AZI) which is patient-specific. Indeed, we only

consider the values lying in this range in estimation of the

PDFs and recognize the rest as outliers. Here, we determine

AZI based on the power spectral density of EEG waveforms

during the ictal period. That is, analyzing the EEG in the

seizure period, we can define a rough frequency range [ f
0
, f

1
]

characterizing the ictal activities. This frequency band is then

extended to [ f
0
(1 − δ ), f

1
(1 + δ )], and AZI is defined as

[1/ f
1
(1 + δ ),1/ f

0
(1− δ )] where 0 ≤ δ ≤ 1. The dominant

frequency band of the ictal period does not change signif-

icantly from one seizure to another for a specific patient.

Thus, for each patient, analyzing one seizure episode and

choosing a specific δ , we can define the AZI range properly.

B. Entropy as a Measure of Irregularity in EEG

Epileptic seizures can be interpreted as manifestations of

the brain transitions from chaos to order [15]. By monitor-

ing the irregularity level of EEG, it would be possible to

characterize these dynamic changes. In this work, the PDF

of positive zero-crossing intervals for the nth epoch in the

EEG signal and its first and second derivatives are estimated,

respectively named p̂0
n, p̂1

n, and p̂2
n. Then, the differential

entropy [16] of each PDF is calculated by

h(X) = −
∫ ∞

−∞
p(x) log p(x)dx (3)

where p(x) is the given PDF. As approaching to the seizure

onset, the synchronization of neuronal activities increases

which is associated with a loss/reduction of inhibitory mech-

anisms. As a result, we expect the entropy decreases during

the preictal period and reaches the lowest value as the seizure

happens. Therefore, applying a change detection procedure

to the resulting entropy time series, we are able to make

alarms for impending seizures.

C. Upcoming Seizure Alarm

To detect decreases in the entropy time series, we employ

an one-sided cumulative sum (CUSUM) procedure [17]. As

a robust statistics, CUSUM minimizes the detection delay

for any fixed false alarm rate [18]. Let us define the three

entropy time series as {h0
n} (EEG), {h1

n} (1st derivative), and

{h2
n} (2nd derivative), where n represents the epoch number

and h i
n is computed by (3) from p̂ i

n (i = 0, 1, and 2). Then,

the one-sided CUSUM test to detect a decrease in h i
n can be

performed in a recursive form [19] as

S i
n = max

{

0,(γ i − k i
s)−h i

n + S i
n−1

}

(4)

where S i
n is the CUSUM value for the nth epoch, γ i is the

goal value and k i
s is a positive threshold. Then, defining a

decision boundary gs, an alarm sequence is generated by

r i
n =

{

1, S i
n ≥ gs;

0, Otherwise.
(5)

The goal value γ i is determined adaptively for each

epoch in this work. A moving background is defined which

starts several minutes before the current epoch and lasts for

some minutes (here, 15 and 10 min. respectively). Then,

the median of the corresponding entropy values in the

background is considered as the goal value. However, to

avoid the false alarms resulting from sudden increases in the

entropy followed by a decrease, e.g. the increase of entropy

in the postictal period, the goal value is modified using an

interictal segment as a reference. Let µ i and σ i be the mean

and standard deviation of {hi
n} for the reference. Then, the

computed γ i is acceptable only if γ i ≤ µ i + σ i; otherwise,

γ i = µ i. After determining the goal value for the current

epoch, we defined k i
s = αγ i (0 ≤ α ≤ 1). The parameters α

and gs are determined specifically for each patient and are

fixed for all entropy time series.

After generating the alarm sequences for the three time

series, they are combined for each EEG channel as

rn = η
0
r 0

n + η
1
r 1

n + η
2
r 2

n (6)

where ∑3
i=1 η

i
= 1 and η

i
≥ 0. Now, considering different

EEG channels and analyzing them as described above, we are

able to process combined alarm sequences from all channels
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in a time window with the length of L epochs, i.e. spatio-

temporal analysis. Defining a forgetting factor λ , the seizure

prediction index, termed SP, is defined as a multivariate

index for the nth epoch by

SPn = min

{

1,
1

C
min ∑L−1

l=0 e−λ l

L−1

∑
l=0

e−λ lRn−l

}

(7)

where C
min

is the minimum number of channels which must

show an entropy drop to make a prediction alarm, and Rn is

defined as

Rn =
CT

∑
c=1

rn,c (8)

where rn,c is the combined alarm sequence of channel c

for the nth epoch, computed by (6), and CT is the total

number of EEG channels. Finally, an alarm warning of

an upcoming seizure is made as soon as SPn surpasses a

predefined threshold, termed THp. This threshold is defined

specifically for each patient as the maximum of the SP index

for the interictal reference. In this study, for all cases, we set

parameters λ , C
min

, and L to 0.01, 3, and 60 respectively.

III. RESULTS

A. Epilepsy Data

To evaluate the performance of the proposed seizure

prediction algorithm, an EEG dataset provided by the EEG

department of Vancouver General Hospital (VGH) after

ethics approval was utilized. This dataset included ∼21.5

hours of multichannel surface EEG recorded according to

the International 10-20 systems from 4 patients with TLE

(5.37±2.07 hr), contained 16 seizures, and was sampled at

256 Hz. We used bipolar-montage scheme in this work.

To apply a moving-window analysis, each EEG recording

was segmented into thirty-second windows with twenty-

second overlap.

B. Experimental Results

Analyzing EEG recordings of each patient, the AZI range

was determined separately using the first epileptic seizure of

that patient. Also, an interictal segment starting long time

(about 60 min.) before the first seizure in the first recording

was selected as a reference to set the threshold T Hp as well

as to control the false alarm rate as described above.

Fig. 1 shows the typical entropy waveform for different

states of the EEG signal in channel T4-T6 of patient 3

suffering from right TLE. While the entropy level does

not change significantly during the interictal state, it drops

several minutes before the seizure onset (dashed line) and

reaches it minimum value in the ictal period. Consecutively,

the entropy increases in postictal phase. The spatial sum of

the combined alarm sequences (R), computed by (8), and the

SP index are presented in Fig. 2(a) and 2(b) respectively for

this case. As shown, there is a significant increase in the SP

index before the seizure onset.

In the quantitative evaluation of the proposed method, we

compared the SP index with the threshold T Hp. A prediction

was considered to be true if a seizure happened within
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Fig. 1. The entropy waveform for positive zero-crossing intervals of the
EEG signal in bipolar channel T4-T6 of patient 3 with right TLE; AZI =
[125 334]ms. (a) Interictal period. (b) Several minutes before the seizure
onset to a few minutes after. Dashed line indicates the onset.

45 min. after the alarm; otherwise, it was labeled as a

false alarm. The prediction time was defined as the time

difference between the alarm and the visual seizure onset

(electrographic onset). To investigate the contribution of the

brain hemisphere not including the seizure focus, i.e. the

other hemisphere, in anticipation of upcoming seizures, we

applied the algorithm to the EEG dataset with and without

considering the channels of the other hemisphere for each

patient (Fig. 3). As shown, the inclusion of the other channels

increased the number of true alarms in all patients except

one. This implies that dynamic changes before epileptic

seizures are not confined to the side of the seizure focus.

Investigating the effect of EEG derivatives on the seizure

prediction was another part of this study. We applied the

algorithm to all recordings of the four patients with different

values of weighting parameters (η
0
, η

1
, and η

2
), while

all EEG channels were considered (CT = 15). Results are

summarized in Table I and revealed that considering the first
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Fig. 2. (a) The spatial sum of the combined alarm sequences, R, and (b)
the seizure prediction index, SP, for the case presented in Fig. 1.
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Fig. 3. Results of the proposed seizure prediction algorithm applied to
all EEG channels and the channels on the side of the seizure focus in all
patients.

TABLE I

RESULTS OF APPLYING THE SEIZURE PREDICTION ALGORITHM TO THE

EPILEPSY DATA WITH DIFFERENT WEIGHTING PARAMETERS.

Weighting False Average

Parameters Sensitivity (%) Prediction Prediction
(η

0
, η

1
, and η

2
) Rate (/hr) Time (min.)

η
0

= 1, η
1

= η
2

= 0 62.5 0.09 30.5

η
0

= η
1

= 1
2
, η

2
= 0 81.25 0.28 24.8

η
0

= η
1

= η
2

= 1
3

87.5 0.28 25

(η
1
6= 0) and second (η

2
6= 0) derivatives of the EEG signal

increased the sensitivity of the algorithm significantly, while

the prediction time decreased slightly. Although specificity

decreased due to EEG derivatives, the false prediction rate

was acceptable by considering the fact that scalp recordings

were highly corrupted by different artifacts and noise.

IV. CONCLUSION

An entropy-based approach for predicting epileptic

seizures using the surface EEG was proposed in this work.

Estimating PDFs of the positive zero-crossing intervals in

the EEG signal and its first and second derivatives, we found

significants drops in the entropy of these distributions several

minutes before the seizure onsets. Applying the algorithm to

scalp EEG recordings from 4 patients with TLE, 14 out of 16

seizures (87.5%) were predicted with an average prediction

time of 25 min. and a false prediction rate of 0.28/hr. Results

revealed that channels not belonging to the side of the seizure

focus also showed dynamic changes before seizures.

In order to better evaluate the proposed method and

confirm the preliminary results, we will apply the algorithm

to a larger set of EEG recordings in the future. In addition,

the algorithm will be tested for statistical validity using

surrogate data [20]. Also, we will test the algorithm on EEG

data from patients with different types of epilepsy to inves-

tigate the predictability of epileptic seizures emanating from

other lobes. Finally, we intend to combine this method with

our previously proposed seizure detection algorithm [21] to

make it capable of self-assessing the prediction alarms and

adapting the related parameters.
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