
 

Abstract — The deployment of Wearable Health Monitoring 

Systems (WHMS) can potentially enable ubiquitous and 

continuous monitoring of a patient’s physiological parameters. 

Moreover by incorporating multiple biosensors in such a system 

a comprehensive estimation of the user’s health condition can 

possibly be derived. In this paper we present a Stochastic Petri 

Net (SPN) model of a multi-sensor WHMS along with a 

corresponding simulation framework implemented in Java. The 

proposed model is built on top of a previously published multi-

sensor data fusion strategy, which has been expanded in this 

work to take into account synchronization issues and temporal 

dependencies between the measured bio-signals. 
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I. INTRODUCTION 

EALTH monitoring via wearable or portable systems has 

been widely researched during the past ten years[1],[2]. 

The main purpose of such systems is to realize out-of-hospital 

monitoring of the user’s most critical physiological parameters 

in a non-invasive and ubiquitous manner and thus facilitate 

personalized and/or user-operated health management. It is 

expected that the deployment of such systems will lead to 

better understanding and treatment of several chronic 

conditions and also potentially enable early diagnosis and 

prevention of various medical incidents or diseases [3]. 

There have been several approaches towards the realization 

of wearable health monitoring systems (WHMS). Typically 

WHMS have been set up around the concept of Body Area 

Networks (BAN) [4],[5] or they have been based on the 

implementation of either specialized devices [6] or smart 

textile garments [7],[8]. The majority of these research efforts 

have focused on addressing various issues regarding WHMS 

such as reliable data sensing, power management, wireless 

transmission and security of collected measurements and 

unobtrusive system design. As a result most of the WHMS 

prototypes [9],[10] or products [11] provide the functionality 

of continuously logging physiological data and possibly also 

that of alarm generation in case the sensed data are detected to 

be above or below some fixed threshold value. Moreover in 

some cases on-system parameter extraction or pattern 

classification may also be performed [12]. However by 

incorporating multiple biosensors in a WHMS, advanced 

embedded decision support can potentially be enabled via 

multi-parametric analysis. Furthermore equipping a wearable 

health monitoring system with the capability of performing 

proper statistical and intelligent processing of multiple 

collected bio-signals in terms of pre-defined “medical rules” 

[13], could lead to on-site health incident detection or 

prevention. In addition to that, the amount of physiological 

data a supervising physician may thus need to go through (and 

accordingly the time he would need to spend on a particular 

patient) can be minimized in that manner, thus reducing also 

the corresponding medical costs for the patient. 

In this paper a Stochastic Petri Net (SPN) model of a multi-

sensor WHMS is presented. The described model is designed 

around a bio-signal data-fusion strategy we have presented in 

[14], that was based on the Prognosis formal language model 

according to which extracted symptoms from physiological 

measurements were represented as context-free language 

symbols. Finally a corresponding simulation framework 

implemented in Java is also presented, which resembles the 

simulator described in [15] although that work was centered 

around managing the energy consumption in BANs which is 

not considered here. 

II. SPN MODEL 

A. SPN in general 

Using SPNs as a graphical modeling tool, we are able to 

provide a detailed and at the same time easy-to-comprehend 

functional description of the wearable health-monitoring 

system. Furthermore SPNs enable a hierarchical top-down 

modeling of the system while capturing the effects of 

concurrency and synchronization of events that take place in 

the system. 

B. Level 1 

Fig.1 presents the first level of the hierarchical SPN model 

of the WHMS. There is always a token at the place 

representing the user/patient denoting the fact that the user is 

constantly “ON”, meaning that the human body provides the 

WHMS with body signals in a continuous fashion. 

Furthermore the user is able to provide voice feedback to the 

system to record non-measurable health symptoms. 

The WHMS device is capable of directly communicating 

with the user in terms of an automated HMI dialog system, 

whenever the system detects a health status of high risk or the 

user notifies the system about a symptom like for example 

chest pain that may “require further investigation”. 

Furthermore, the WHMS provides either regular updates of 

the user’s health condition or upon request from the medical 

center. Finally the system may “decide” that the user requires 

immediate medical attention based on the aggregated 

physiological symptoms and thus may send an alert to the 

medical center or even request for an ambulance to be 

dispatched in case the medical center approves that action as 

well. 
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C. Level 2 

In the following we describe the second level of the 

hierarchical SPN model of the WMHS, which is depicted in 

Fig.2. In this level, the functionality of the wearable device is 

simulated in a scenario in which the following sensors are 

available: ECG, SpO2, thermometer, respiration sensor, blood 

pressure monitor, GPS and a voice recognition/synthesizer 

system to capture direct patient feedback. 

The central node of the WHMS (microcontroller board, 

PDA, smart-phone etc) continuously gathers physiological 

parameters from the wearable sensors in a round-robin fashion 

to create input vectors for the Prognosis language. For 

example the pulse oximeter sends an estimation of the oxygen 

saturation and the heart rate of the user every 1 second. 

Similarly, the central node polls the thermometer and the 

respiration rate sensor every second to acquire a measurement. 

However since available blood pressure monitors are cuff-

based, the central node needs to request from the BP device to 

initiate a measurement and it should also be able to collect it 

when it is made available. Regarding the ECG collection, 

because the electrocardiogram is sampled at a high rate, e.g. 

250 Hz or even more, it is more reasonable to transmit 

packetized samples of the ECG every sec. That approach 

allows also for easier synchronization with the collection of 

the rest of the bio-signals. 

Finally the voice recognizer module has the ability to 

deliver information about non-measurable symptoms to the 

central node, in case the user has recorded such a 

phenomenon. As in the case of the ECG sensor, to favor the 

round-robin-based synchronized collection of signals, the 

central node polls the voice recognizer for any possible 

detected symptoms. This polling scheme can be thought of 

either as sequential polling of digital and analog ports on a 

microcontroller board or as the beaconing mechanism 

available in Zigbee which allocates specific time intervals to 

distributed sensor nodes or finally as a Bluetooth piconet, 

where master and slaves take turns communicating in an 

inherent round-robin scheme. 

D. Level 3 

In the final level of the top-down hierarchical SPN model 

depicted in Fig.3 we describe the way the central node 

operates. We provide an insight as to how the collected 

physiological (and voice) data are used to create input vectors, 

e.g. words of symptoms for the Prognosis language, which in 

turn looks up the created word to make a decision/estimation 

about the user’s health condition. 

There are three basic types/categories of data that the 

WHMS can collect: a) “scalar” data, like the temperature 

value, the systolic or diastolic blood pressure etc, which 

according to their value give rise to specific symptoms or not, 

b) “morphology” specific data, which in the current scenario 

are comprised of the ECG signal, which need to be analyzed 

to possibly detect patterns of high risk and c) voice data which 

may correspond to non-measurable symptoms that the user 

has chosen to communicate to the device. 

When either a new type a) or type b) measurement is 

collected, it is buffered in the system in a dedicated ring buffer 

for each bio-signal. Then that data are checked for validity, 

e.g. a decision on whether the data are erroneous or valid 

needs to be made based in terms of statistically examining the 

 
Fig. 1  Level 1 of the SPN model: 

User-Device-Medical Center-Ambulance interaction. 

  

 
Fig. 2  Level 2 of the SPN model: Description of the wearable system’s functionality and its interaction with the peripherals/wearable sensors.  
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signal’s trend to possibly eliminate outliers or by using any 

provided sensor status info. If the data are found to be valid, 

they are used to extract the corresponding symptom of health 

through either a database range look-up process or a pattern 

extraction and recognition phase. In the end the extracted 

symptoms or language symbols are passed on to the Prognosis 

language which updates or creates the word which gives a 

thorough estimation of the user’s health. 

Regarding voice recordings, which can also be void in 

terms of null feedback, they are processed and converted to 

text in order for them to be “understood” by the system’s 

language. After cross-checking the detected word(s) with a 

database of non-measurable symptoms, an indication of some 

incident like for example “back pain” may be created and 

given to Prognosis as further contribution to the input vector 

of the word extraction mechanism. 

Finally, the Prognosis scheme produces an output in terms 

of a word, which may give rise to either a normal/healthy 

indication of the user’s status or to an unknown/erroneous 

status or more importantly to an alarming state. These states 

correspond to detectable diseases or general health conditions 

which require some type of medical assistance. In such a case 

an alarm message will be generated and sent to the medical 

station and moreover the system may “decide” to take further 

action in terms of initiating a dialogue with the user or 

suggesting him to take several actions which may help prevent 

an escalation of the occurred or even future event. 

III. SIMULATION 

In accordance to the SPN functional model of multi-sensor 

WHMS presented in the previous section, we have developed 

a corresponding simulation framework implemented in Java. 

The reason for choosing Java is because it can facilitate the 

modular and hierarchical design, which is inherent in SPNs, as 

well as because it can provide the required synchronization 

and concurrency primitives for simulating the multiple 

components and tasks that are present in the WHMS model. 

The main part of the simulation framework is the wearable 

system’s central node, which as explained previously 

continuously “polls” the distributed biosensors and the rest of 

the peripheral components in a round-robin manner. The 

acquired data from every sensor are then stored in a dedicated 

ring buffer and checked for validity. Each time a “full-circle” 

of collecting physiological data has been performed and thus a 

new input vector of features has been formed, the health 

condition of the user is reevaluated. In case the corresponding 

created word of symptoms is interpreted by the Prognosis 

language as a health threatening condition an alarm is 

generated. Moreover in order to take into account possible 

temporal relations between the collected physiological 

measurements, the most recent past data stored in the ring 

buffers are used to create all possible combinations of input 

vectors to check for malicious health conditions. That way a 

more reliable estimation of the user’s health condition may be 

derived. 

The types of sensors (along with their range of values and 

variance) to be included in the simulation of a given scenario 

are selectable upon startup and constitute the continuous 

source of input for the tool. Fig.4 shows the GUI of the 

WHMS simulator. For every sensor the most recent value is 

depicted along with a real time graph of the most recent 

measurements. In addition to that a text box is provided where 

the extracted symptoms (with corresponding time tags) from 

every signal are printed out along with a separate display for 

any detected alarm states. In addition to that, a separate text-

box pops up every time a user-system dialogue is initiated. 

Finally it needs to be noted that the depicted bio-signal values 

in Fig.4 are not corresponding to real measurements and that 

in the current work we are assuming that the WHMS is 

equipped with an automated ECG classifier. 

 
Fig. 3 Level 3 of the SPN model: Functional description of the central node.  
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IV. CONCLUSION 

In the current paper we have presented a novel SPN-based 

functional model for wearable multi-sensor health-monitoring 

systems that focuses on facilitating multi-parametric analysis 

and thus enabling embedded decision support. The proposed 

system model is independent of the actual hardware 

implementation, although ergonomic or power consumption 

restrictions may impose certain practical limitations on the 

system’s performance considering the current state of sensor 

technology. 

However the proposed model along with the accompanying 

simulation framework point out the following fact: WHMS 

equipped with “sufficient” machine intelligence able to not 

only perform advanced physiological data analysis and fusion, 

but also to interact with the patient/user in a meaningful and 

helpful manner will potentially increase the quality of 

personalized and user-operated healthcare to a very high 

standard. Our next step is to complete the setting-up of our 

corresponding system prototype and comparatively evaluate 

our system design with the proposed simulation model by 

using real-time real-life data. 
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Fig. 4 The GUI of the WHMS simulator  
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