
  

  

Abstract— The paper proposes a novel method of extracting 
features from physiological signals using intrinsic mode 
decomposition (IMD) and morphological signal processing 
(MSP). The complex, nonlinear and non-stationary biomedical 
signals are first decomposed into intrinsic mode functions 
(IMF). Next each IMF is subjected to MSP for extracting 
features, namely, pattern spectrum entropy, that characterize 
the shape-size complexity of the component signals.  These 
along with other features like energy and sample entropy are 
extracted from the individual IMF as well as the cumulative 
sums of IMF for characterizing the signals. The procedure is 
illustrated using heart sound signals digitally recorded during 
cardiac auscultation representing different cardiac conditions.  

I. INTRODUCTION 
N living systems, a rich variety of dynamical behaviors 

are manifested through physiological signals that are 
complex, nonlinear and non-stationary. Several techniques 
have been proposed for analyzing such biomedical signals 
[1-5]. Huang et al. [6] proposed an intuitive signal 
processing technique, empirical mode decomposition 
(EMD), suitable for nonlinear, non-stationary biomedical 
signals.  Approximate Entropy (ApEn) and Sample Entropy 
(SampEn) have been proposed as measures of regularity and 
complexity of time series signals [4, 5]. ApEn and SampEn 
are used for short and noisy physiological signals as 
alternatives to other nonlinear system measures like 
Lyapunov exponent and correlation dimension (D2) [2]. 
However, these entropy based features are sensitive to the 
low-frequency trend of the noisy signal. Amoud et al. [7] 
proposed intrinsic mode entropy (IMEn) as the SampEn of 
the EMD extracted intrinsic mode functions (IMF) for 
reducing the sensitivity to low-frequency trend and noise.  

Mathematical morphology (MM) was introduced to 
analyze geometrical features of images through basic 
morphological operations of erosion (contraction), dilation 
(expansion), opening (erosion followed by dilation) and 
closing (dilation followed by erosion) using a structuring 
element (SE) of simpler shape and size [8-10]. Though the 
initial applications of MM were mainly in the field of image 
processing and analysis, there have been growing interests in 
other domains including biomedical signal processing [11]. 
Morphological signal processing (MSP) is used to extract 
multi-scale pattern spectrum (PS) [10]. Recently, the author 
has proposed a novel entropy based feature from PS as a 
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health index for prognostics of machinery conditions [12]. 
This paper presents a hybrid technique combining EMD 

for decomposition of physiological signals into IMF and 
MSP for extraction of PS entropy based features. Figure 1 
shows the schematic of the feature extraction process with 
three major stages-1: data acquisition, 2: signal processing 
and 3: feature extraction. Features based on PS entropy and  
SampEn are extracted from  individual IMF and their 
cumulative sums. The procedure is illustrated using digitally 
recorded heart sound (HS) signals during cardiac 
auscultation [13, 14].   

Rest of the paper is organized as follows. Section II 
presents a brief introduction to MSP and PS entropy. In 
Section III, IMD and IM entropy based features are briefly 
discussed. Section IV presents HS signals considered in this 
paper. Results and discussions are presented in Section V. 
Salient features of the present work are summarized in 
conclusions.  

II. MORPHOLOGICAL SIGNAL PROCESSING (MSP) 
MSP is based on a set-theoretical method of nonlinear 

analysis called MM. In MM, the geometric features of 
images and signals are modified locally through basic 
morphological operations of erosion, dilation, opening and 
closing. In this section, analysis of time domain signals 
using MSP is briefly discussed, see [8-10] for details. 

A. Basic Morphological Operations 
The basic idea of MSP is to modify and extract the 

geometrical features of a signal by its morphological 
convolution with another object of simpler shape and size, 
termed as structuring element (SE). The SE can be of 
different shapes including flat, triangular, semi-circular, disk 
and any irregular curve. The size (scale) of SE, in both 
length and height, depends on the type of signal to be 
analyzed.  The selection of SE, in terms of shape and size, is 
an important issue in MSP. The basic morphological 
operations of erosion, dilation, opening and closing are 
defined  for a one-dimensional sampled function, f(i), with a 
discrete-valued SE, g(j), (i∈I, j∈J, J<I) as follows: 

Erosion:               ),g(j)j)(f(imin   (i) g)  (f −+=Θ           (1) 
Dilation:              ),g(j)j)(f(imax   (i) g)  (f −−=⊕         (2) 
Opening:             ),g(j))g(f(  (i) g)  (f ⊕Θ=                   (3) 
Closing:             ),g(j))gf((  (i) g)  (f Θ⊕=•                  (4) 

where Θ, ⊕,   and • denote the morphological operators 
for erosion, dilation, opening and closing respectively.  

Morphological Processing of Physiological Signals for Feature 
Extraction  

B. Samanta, Senior Member, IEEE 

I

324

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



  

 

 
Fig. 1.  Schematic of feature extraction process. 

B. Multiscale Morphology Analysis and Pattern Spectrum 
Most of the traditional MM used single-scale analysis with a 
SE of fixed scale selected a priori based on the nature of the 
signal [8-10]. To overcome the necessity of assigning a fixed 
scale, multicsale morphological filters and PS were 
introduced [10]. For a nonnegative sampled signal, f(i), i∈I 
and a SE, g, PS are defined as follows: 
     Nn0     ],g)1n(fngf[S)n,g,f(PS ≤≤+−=+ ,        (5) 
     Kn1     ],g)1n(fngf[S)n,g,f(PS ≤≤−•−•=− .         (6) 
Where ∑=

i
)i(f)f(S , N is the maximum size of n with f 

having sufficient dc-bias such that Nn 0, g  f ≤∀≥ and K is 
the minimum size of n. 
 The PS contains useful qualitative information about the 
signal (f) shape and size relative to the SE (g). The degree of 
shape content of g in f is given as normalized 
PS: )f(S/)n,g,f(PS)n(q = . 

C. Pattern Spectrum Entropy 
The quantitative measure of shape-size complexity of a 

signal relative to a SE pattern is obtained as an average 
roughness from its PS using the concepts of information 
theory [10]: 

                 ∑−=
=

N

0n
)n(qlog)n(q)g/f(H .                         (7) 

The H(f/g) is termed as PS entropy and its normalized 
form is defined as )1Nlog(/)n,g,f(H)g/f(H r += . PS 
entropy (PSEn) gives a quantitative measure of the shape-
size complexity of the signal.   

III. INTRINSIC MODE DECOMPOSITION (IMD) 
Huang et al. [6] presented an intuitive method of  

decomposing a time series signal into IMF modulating both 
in amplitude and frequency.  The iterative extraction of IMF 
is on the basis of the local representation of the signal as the 

sum of an oscillating component (first IMF) and a local 
trend (residual). The residual signal is further represented as 
the sum of another (second) IMF and the next residual. The 
process of IMF extraction is repeated till the residual 
becomes a monotonic function without any extrema. The 
original signal, x(t), is represented as the sum of all IMF 
(ck(t), k=1,..,K) and the residual r(t) as follows:   

                  ),t(r)t(c)t(x
K

1k
k += ∑

=
                                   (8) 

The cumulative sum of IMF up to the level k, Ck(t), 
defined in Eq. (9), represents the sum of multilevel filtered 
components: 

                           ∑
=

=
k

1i
ik )t(c)t(C                                   (9)                        

Features can be extracted from these IMF (ck(t)) and their 
cumulative sums (Ck(t), k=1,…,K) for characterizing the 
signal. 

A. Intrinsic Mode Entropy (IMEn) 
SampEn is defined as the negative logarithm of the 

conditional probability that two sequences that are similar 
for m points (dimension m), remain similar at the next point 
(m+1), within a tolerance r, Eq.(10). The probability density 
function is estimated using Eq. (11), where Λ represents 
Heaviside function and N is the length of the time series [5].  
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⎟
⎠
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⎜
⎝

⎛
−=

+

)r(A

)r(A
ln)N,r,m(SampEn
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1m
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Amoud et al. [7] proposed intrinsic mode entropy as the 
SampEn of the cumulative sum of IMF, upto level k, to 
make it insensitive to the low frequency trend or bias. In the 
present work, IMEn is defined as the SampEn of individual 
IMF as follows:  

       )r,m),t(c(SampEn)r,m,k(IMEn k=                    (12) 

B. Intrinsic Mode PS Entropy (IMPSEn) 
In this work, intrinsic mode pattern spectrum entropy 

(IMPSEn) is proposed for individual IMF, similar to Eq. (7), 
as follows: 

                ).g/)t(c(H)g,k(IMPSEn k=                       (13) 

C. Cumulative IM Features 
The cumulative sums of IMF, Ck(t), have been used to 

define the sample entropy of cumulative IMF, cIMEn, 
similar to [7], as follows: 

             )r,m),t(C(SampEn)r,m,k(cIMEn k=           (14) 
The cumulative intrinsic mode PS entropy (cIMPSEn) has 

been proposed as follows: 
             ).g/)t(C(H)g,k(cIMPSEn k=                        (15) 

IV. HEART SOUND  (HS) SIGNALS 
Heart beats make two sounds (“lub-dub”) with no sounds 
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in between under normal conditions. However, there may be 
extra sounds or ‘heart murmurs’ which may or may not have 
pathological significance. The heart murmurs can be of 
different types depending on the blood flow conditions in the 
heart.  These murmurs can be analyzed for an initial 
assessment of heart conditions and would serve as a basis of 
further investigations for firm diagnosis and rational 
treatment [13]. In this paper, heart sound data for five 
different cardiac conditions were considered: (a) normal (N), 
(b) systolic murmur (S1, S2), and (c) diastolic murmur (D1, 
D2).  Figure 2 shows the single cycle HS signals.  
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Fig. 2. Heart sound signals (from top): N: Normal, S1, S2: Systolic murmur, 
D1, D2: Diastolic murmur. 

V. RESULTS AND DISCUSSIONS 
In this Section, features extracted from HS signals are 

presented. First the features were extracted from the original 
signals. Next, each HS signal was decomposed into IMF. 
Features were extracted from individual IMF, ck(t), as well 
as their cumulative sums, Ck(t), k=1, K. 

A. Overall Signal Features 
HS signals (N, S1, S2 and D1, D2) were analyzed for 

determining correlation dimension, D2 [2]: 

                     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→=

rlog
)r(Clog)0rlim(D2                  (16) 

where r is cell size and C(r) is correlation sum. Figure 3 
shows the variation of logC(r) versus logr for all five types 
of HS signals. The slope of the linear portion of each curve 
was used as the estimate of D2 [2]. 

Table 1 presents normalized signal energy (E), correlation 
dimension (D2), SampEn and PSEn for HS signals. 

B. Intrinsic Mode Functions (IMF) 
Each HS signal was decomposed into IMF using EMD. 

Figure 4 shows the IMF for signal S1. First the original 
signal, x(t), is shown followed by six IMF (ck(t), k=1,6) and 
the residual (r(t)). IMF at levels 1-4, i.e., ck(t), k=1-4, are 
found to be dominant. IMF at levels 5-6 show relatively low-
amplitude slow trends. IMF of other HS signals were 
similarly obtained. 

C. Intrinsic Mode (IM) Features  
Each of IMF was further processed to extract features –IM 

Entropy (IMEn) and IM pattern spectrum entropy 
(IMPSEn). Figures 5(a) and (b) show these features for each 
IMF of HS signals. IMPSEn show better distinction among 
HS signals than IMEn. For signals N and S1, IMPSEn of  
third IMF was found to be most dominant. For S2, fourth 
and fifth IMPSEn, and for D1 and D2, first three IMPSEn 
were prominent.  

D. Cumulative Intrinsic Mode (cIM) Features  
Features were next extracted from the cumulative sums of 

IMF (Ck(t), k=1,K). Figures 6(a) and (b) show the features 
for each Ck(t) of HS signals. Distinction among HS signals is 
more prominent in cIMPSEn than cIMEn. The contributions 
of individual IMF are evident from the large differences of 
cIMPSEn between successive IMF indices. 

VI.  CONCLUSIONS 
The study presents a hybrid approach of feature extraction 

from physiological signals combining EMD and MSP. The 
approach combines the advantages of both techniques in 
analyzing nonlinear, non-stationary biomedical signals. MSP 
based features show better distinctive property than sample 
entropy. In this work, feasibility of using these techniques 
has been investigated using a limited set of available HS 
signals. In the next phase, the approach will be validated 
through extended datasets including other biomedical 
signals. 
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Fig. 3.  Variation of logC(r) versus logr for HS signals 

 
TABLE 1: OVERALL SIGNAL FEATURES 

 
HS Type E D2 SampEn PSEn 

Normal 0.2576 0.1683 0.0064 0.1194 
Systolic 1 0.2080 0.2878 0.0041 0.0703 
Systolic 2 0.1717 0.1134 0.0107 0.0778 
Diastolic  1 0.1860 0.3230 0.0027 0.0536 
Diastolic 2 0.1788 0.4271 0.0300 0.1415 

326



  

0 1500 3000 4500 6000 7500 9000
-1
0
1

S
1

(t
)

0 1500 3000 4500 6000 7500 9000
-0.5

0
0.5

c 1(t
)

0 1500 3000 4500 6000 7500 9000
-1
0
1

c 2(t
)

0 1500 3000 4500 6000 7500 9000
-0.5

0
0.5

c 3(t
)

0 1500 3000 4500 6000 7500 9000
-0.2

0
0.2

c 4(t
)

0 1500 3000 4500 6000 7500 9000
-0.05

0
0.05

c 5(t
)

0 1500 3000 4500 6000 7500 9000
-0.1

0
0.1

c 6(t
)

0 1500 3000 4500 6000 7500 9000
-1
0
1

r(
t)

 
Fig.4. Intrinsic Mode Functions (IMF) of HS signal S1 
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Fig. 5. IM features (a) IMEn, (b) IMPSEn. 
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Fig. 6. Cumulative IM features (a) cIMEn, (b) cIMPSEn. 
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