
 

 

Abstract— Single photon emission computed tomography 

(SPECT) imaging provides functional information and precise 

physiological uptake of radioactivity in a patient’s body. Al-

though SPECT imaging is considered to be highly useful in 

oncology, but the low signal to noise ratio (SNR) caused by 

photon noise, introduces considerable compromise in image 

quality and reduction of diagnostic accuracy. It is necessary to 

apply appropriate noise reduction algorithm to improve the 

quality of acquired images. In this paper we have used wavelet 

based denoising in which PSNAR criteria were utilized to ar-

rive at an optimum thresholding of the coefficient at wavelet 

domain.  

We have used SIMIND software for simulation of SPECT 

images and generation of images using cylindrical jaszak phan-

tom. The images were acquired using one million counts of 

64×64 matrix size. In this research, simulated images were 

utilized to construct data dependent optimum threshold level of 

wavelet coefficients We have compared the results of our thre-

sholding scheme with those obtained by some of commonly 

used standard denoising schemes in which we show the use of 

commonly used wavelet-based denoising leads to an inferior 

noise reduction results as compared with our optimally 

searched and derived thresholding.  

 

Keywords— SPECT, Wavelet Transform, Denoising, Op-

timal thresholding 

I. INTRODUCTION  

Wavelet transform is characterized by many unique fea-

tures that have been applied in wide spectrum of application 

problems including image processing, compression and 

noise reduction. This transform also provides an elegant 

framework for subband analysis in which both high and low 

frequency components of an image can be analyzed sepa-

rately. Recently, various wavelet-based methods have been 

proposed for image enhancement and restoration. Often 

wavelet image restoration methods utilize thresholding ap-

proach in which each wavelet coefficient of the image is 

compared with a given threshold where it is set to zero if the 

coefficient is smaller than the chosen threshold, otherwise it 

is retained using hard denoising or reduced in magnitude by 

threshold level in soft denosing. The intuition behind such 

an approach follows from the fact that the wavelet transform 

is efficient at energy compaction, thus small wavelet coeffi-

cients are more likely to be due to noise, and large coeffi-

cients are generally due to important image features, such as 

edges. Originally, Donoho and Johnstone proposed the use 

of a universal thresholding applied uniformly across the 

entire wavelet decomposition tree [1, 2]. However the use of 

different thresholds for different subbands and levels of the 

wavelet tree was found to be more effective for noise reduc-

tion [2, 3, and 8]. Some methods of selecting thresholds that 

are adaptive to different spatial characteristics have recently 

been proposed and investigated [5-8]. It was found that such 

adaptivity in the threshold selection tends to improve the 

wavelet thresholding performance since it accounts for addi-

tional local statistics of the image, such as smooth or edge 

regions. 

In this paper, we used SIMIND [9] software for simula-

tion of SPECT images where we prepared images using 

simulated cylindrical jaszak (Jaszczak) phantom [9, 10]. The 

images were acquired using one million counts and in 

64×64 matrix size. For reference image we acquired an 

image with high counts (five million). Then, we recon-

structed these images using software that was written in 

MATLAB. This was followed by using one million counts 

of images (noisy initial image) along with five million 

counts of the reference image, where they were normalized 

and utilized for comparison of results. Two criteria, Root 

mean square error and peak signal to noise ratio (PSNR) 

were utilized for reconstructed image quality assessment. 

For de-noising of noisy image, several wavelets from both 

orthogonal and biorthogonal series were considered. How-

ever, we confined our usage to Db2 and Db3 mainly for 

high order of moment cancellation of these wavelets  

Several programs were written in MATLAB for de-

noising. These programs were based on use of different 

wavelets and three approaches for thresholding (Global 

thresholding, Level dependent thresholding and optimum 

thresholding). Then, de-noised images were compared with 

reference image using MSE and PSNR measures. 

II. BASIC CONCEPTS 

A. Theory 

1. 2-D Discrete Wavelet Transform 

 

A 2-D separable discrete wavelet transform is equivalent 

to two consecutive 1-D transforms implemented on rows 

followed by a 1-D column transform. Transform coefficients 

are obtained by projecting the 2-D input image x(u, v) onto a 

set of 2-D basis functions that are expressed in tensor prod-

uct form. (1): 
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The 2-D DWT can be considered as projection of the im-

age x (u, v) onto set of scaling function ),( vuφ and wave-

lets ),(1 vuψ , ),(2 vuψ and ),(3 vuψ .  The corresponding 
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transform coefficients ),,( mjNX , ),,(
)1(

mjNX , 

),,(
)2(

mjNX and ),,()3(
mjNX  belonging to different sub-

bands of  the decomposition can be expressed as follows. 
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),,( mjNX  are the coarse coefficients that constitute the 

LL subband. The ),,(
)1(

mjNX  coefficients contain the ver-

tical details and correspond to the LH subband. The 

),,()2( mjNX  coefficients contain the horizontal details and 

correspond to the HL subband. The ),,(
)3(

mjNX  coefficients 

represent the diagonal details in the image and constitute the 

HH subband. Thus single-level decomposition at scale (N 

+1) has four subbands of coefficients as shown in Fig 1. 

 
Fig. 1 Single-level 2-D wavelet decomposition (analysis). 

 

The synthesis bank performs the 2-D IDWT to recon-

struct MVvux ∈),( . 2-D IDWT is given in equation (3). 
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2. The Wavelet Thresholding Process 
 

Wavelet thresholding for image denoising attempts to 

remove the noise present in the image while preserving most 

of the image characteristics, regardless of its frequency 

content. It involves the following steps: 

1.  Acquire the noisy image. 

2. Compute a linear forward discrete wavelet transform of 

the noisy image. 

3. Perform a non-linear thresholding operation on the wave-

let coefficients of the noisy image. 

4. Compute the linear inverse wavelet transform of the thre-

shold wavelet coefficients. 

These simple four-step processes are known as wavelet 

thresholding or shrinkage. The wavelet denoising process 

can be summarized as follows: 
( )
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λ                            
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In summary, the wavelet denoising problem can be for-

mulated as follows Design a thresholding transforma-

tion )(.,λT with threshold λ¸ such that: 

[ ]2
x̂xEMSE −=

                                                        
(5) 

Application of, MSE criteria requires assumption of the 

underlying distribution of noise content for which it is often 

assumed to be white Gassian noise. To maintain the white 

noise structure of noise in coefficient domain, it is also re-

quired the use of orthogonal transformation .Proper selec-

tion of analyzing wavelets is also to made such that sparsity 

of the coefficient is insured where important features of the 

original image such as edges are retained in the denoised 

signal while noise content is removed as much as possible 

by suitable thresholding. We have used two measures MSE 

and PSNR to compare the performance of denoising results. 

It is shown that the use of standard thresholding strategies 

both under soft and hard denoising does not yield optimal 

results. This can be described by noting that while noise 

content of SPECT images contain white Gaussian noise, 

however   noise content  of SPECT images consists mainly 

of  non-stationary Poisson noise that are observed in the 

projection data i.e. sonograms, they are the main contributor 

for the loss of image quality in the reconstructed SPECT 

images. We have compared the performance of standard 

commonly used denoising schemes with an optimally de-

rived thresholding using MSE and PSNR and have shown 

that considerable improvements can be obtained by deviat-

ing from the standard denoising threshold levels. Below two 

standard thresholding algorithms are briefly described. 

III. MATERIALS AND METHODS 

There two standard wavelet thresholding methods often 

applied for denoising referred to as VisuShrink and Le-

velShrink differ only in the selection of the threshold λ , and 

the strategy employed in applying the thresholding operator.  

 

A. VisuShrink     

    The VisuShrink technique consists of applying the soft 

thresholding operator using the universal threshold: 

wuniv M σλ ×= )ln(2                                                   (6) 

Where M is image size and wσ  is the standard deviation of 

difference between Original image and noisy image that 

defines the standard deviation of noise and equal 4.35. as 

originally proposed by Donoho and Johnstone [2]. 

B. Level Shrink 

    The level-dependent thresholding algorithm, called Le-

velShrink, proposes the use of different thresholds for dif-

ferent levels of the wavelet tree. Since the content of the 

various subbands varies from one level to the next, the use 

of level-dependent thresholds seems more reasonable than 

the use of a uniform threshold. 

One particular level-dependent thresholding scheme, 

called LevelShrink, is to set the threshold at the 
thj  decom-

position level of the wavelet tree as follows [8]: 
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Where J is the total number of decomposition levels and j is 

the scale level on which the wavelet coefficient for thre-

sholding are located. 
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 As illustrated in Table 1, this scheme uses larger thre-

shold values for the finer scales decomposition tree and 

smaller thresholds for the more coarse scales of the wavelet 

tree. Note that for the highest level, the universal threshold 

is used. However, for the lower levels, the threshold is grad-

ually scaled down. 
 

Table 1: The optimal thresholds for the various wavelet decomposition 

levels used by the Level Shrink thresholding scheme. 

 finer    Wavelet Decomposition Level   coarse 

Level 6 5 4 3 2 1 

Threshold 17.7422 12.5456 8.8711 6.2728 4.4355 3.136 

 

C. Peak Signal-to-Noise Ratio 

We have used MSE and PSNR as a measure of the quali-

ty of reconstructed image where for an original image u of 

size m×n and denoised, image u~  they are given by: 
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Where MAX(u) is the maximum pixel value for an 8 

bits/pixel gray-scale image 
 

IV. RESULTS 
 

A.  Exploring the Optimality of the Universal Threshold 
 

In order to explore the "optimality" of VisuShrink and 

universal thresholding, the quality of the denoised image, as 

measured by the RMSE and PSNR using different value of 

threshold level is examined. The noisy image of "SPECT", 

as described above was used and the threshold was allowed 

to span a wide range of values including the universal thre-

shold. Fig. 2 illustrates the results obtained using the hard 

and soft thresholding approaches. We observe that for the 

given test image, the optimal thresholds corresponding to 

the hard and soft thresholding algorithms are lower than the 

universal threshold adopted by VisuShrink, particularly in 

the case of soft thresholding.  

  
Fig. 2 The dependence of the quality of the denoised image on the selection 

of the threshold for hard and soft thresholding, using the noisy image of 

“simulated SPECT”. 

For the given test image of "SPECT", the optimal thre-

sholds were found to be 12* ≈hardλ , for hard thresholding 

and 6
* ≈softλ , for soft thresholding. The ratio between the 

optimal values o f 
*
softλ  and *

hardλ , can generally be given by 

the following s: 

2

*
* hard
soft

λ
λ ≈                                                 (10) 

     

The above ration between the optimal values of 
*
softλ  and 

*
hardλ  has also been widely reported in the wavelet thre-

sholding literature [6, 8]. 
 

B. Implementation of different thresholding methods 
 

Figure 3 illustrates the noisy image and Original image 

and the profile of noisy image and Original image. 

  
a b 

  
c d 

Fig. 3 (a) Original image, (b) noisy image, (c) profile of Original 

image, (d) profile of noisy image. 

 

Three wavelet thresholding methods (VisuShrink, Le-

velShrink and optimal thresholding algorithm) were imple-

mented for reconstruction of denoised SPECT image. We 

note that VisuShrink was found to yield an overly smoothed 

estimate, especially in case of the soft thresholding.. This is 

because the universal threshold 
univλ , tends to be too high 

for large values of M, setting to zero many signal coeffi-

cients along with the noise. This illustrates a common limi-

tation of VisuShrink widely reported in literature [1, 6, 8]. 

 

  
a b 

  
c d 
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Fig. 4 (a) Visushrink hard thresholding denoised estimates of SPECT, 

(b) Visushrink soft thresholding denoised estimates of SPECT, (c) 

Profile of denoised image by Visushrink hard thresholding, (d) Profile 

of denoised image by Visushrink soft thresholding. 

 

The VisuShrink algorithm was implemented for the pur-

pose of restoring and enhancing the noisy image of 

"SPECT". Figure 4 illustrates the results corresponding to 

the hard and soft thresholding methods using the universal 

threshold ( 7422.17=universalλ ). 

As described in the previous section, VisuShrink adopts 

the universal threshold to be used uniformly throughout the 

wavelet decomposition tree of the noisy image. Intuitively, 

due to the high variability of the wavelet coefficients across 

different subbands and decomposition levels, it would be 

more reasonable, and perhaps more efficient, to use different 

thresholds for different subbands and levels of the wavelet 

tree. 

Figure 5 illustrates the results obtained by using the hard 

and soft LevelShrink thresholding the noisy test image of 

"SPECT". 

 

  
a b 

  
c d 

Fig. 5(a) Levelshrink hard thresholding denoised estimates of SPECT, 

(b) Levelshrink soft thresholding denoised estimates of SPECT, (c) 

Profile of denoised image by Levelshrink hard thresholding. (d) Profile 

of denoised image by Levelshrink soft thresholding. 
 

The optimal values of soft and hard thresholds were also 

used to denoise the test image and the results are illustrated 

in Figure 6. 

 

  
a b 

  

c d 

Fig. 6 (a) Optimal Hard threshold denoised estimates of 

SPECT 13* =hardλ . (b) Optimal Soft threshold denoised estimates of 

SPECT 5.5
* =softλ . (c)  Profile of denoised image by Optimal hard 

threshold. (d) Profile of denoised image by soft Optimal threshold. 

 

Table 2 shows the result of Implementation of the various 

thresholding methods. 

 
Table 2: Comparison between the results obtained by the various wavelet 

thresholding methods 

Thresholding methods 
Hard thresholding Soft thresholding 

RMSE PSNR RMSE PSSR 

Visushrink 3.5251 37.2889 4.4737 35.1147 

Levelshrink 3.7104 38.3290 3.9156 36.2748 

Optimum thresholding 3.1097 38.6311 2.9775 38.6538 

V. CONCLUSIONS  

The result of denoising as measured by MSE and PSNR 

is summarized and compared in table 2. It is seen that the 

optimally searched threshold levels leads to higher perfor-

mance in eliminating the noise as compared with both of 

global thresholding (Visushrink) and level dependent thre-

sholding methods (Leveshrink). In de-noising by optimal 

thresholding method, the peak signal to noise ratio (PSNR) 

value for the test image was found to be 38.65 db, as com-

pared with global soft thresholding method (Visushrink) 

35.114 db namely an improvement of 9.15 prercentage 

PSNR and as compared to level dependent thresholding 

method (Leveshrink) with an improvement of 6.15 percen-

tage in PSNR. Similar improvements are obtained in MSE 

as given in Table 2. , In summary, it is our conclusion that in 

practice, it may be necessary to investigate the performance 

of denoising schemes as to their optimality by changes that 

may be made around the derived threshold levels. This may 

lead to improved denoising results and more significantly to 

an enhanced diagnostics. 
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