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Abstract— Spectral compression of surface electromyogram
(sEMG) is associated with onset of localized muscle fatigue. The
spectral compression has been explained based on motor unit
synchronization theory. According to this theory, motor units
are pseudo randomly excited during muscle contraction, and
with the onset of muscle fatigue the recruitment pattern changes
such that motor unit firings become more synchronized. While
this is widely accepted, there is little experimental proof of this
phenomenon. This paper has used source dependence measures
developed in research related to independent component anal-
ysis (ICA) to test this theory.

I. INTRODUCTION

Muscle fatigue is a condition when the ability of the
muscle to contract and produce force is reduced. Localized
muscle fatigue is when a muscle or a group of muscles has a
reduced ability to contract and produce force despite neural
stimulation; generally as a result of prolonged, relatively
strong muscle activity. Muscle fatigue threshold cannot be
defined as a simple function of muscle load magnitude and
timing because muscle characteristics and capabilities vary
from person to person. Undetected fatigue can cause injury
or pain to the subject.

The cause of local muscle fatigue varies, and depends on
the level of muscle activity and the muscle fiber type. During
short, high power movement, fatigue may result from the
exhaustion of adenosine triphosphate (ATP) or creatine phos-
phate (CP) reserves, which are required to power movement
of the myosin heads which cause contraction.

One explanation for localized muscle fatigue is based on
the change in muscle recruitment due to the onset of fatigue.
Each skeletal muscle is constructed of multiple motor units
(MU) where a motor unit is defined as a motor neuron
and all muscle fibers associated with that neuron. Muscle
properties associated with force production are time variant.
There are number of models that have been developed to
explain the motor recruitment strategies. It is widely accepted
that when muscles are active, motor units are activated
pseudo randomly to ensure smooth generation of force.
Muscle activity can be analyzed non-invasively based on the
electrical activity from the muscle contraction.

Electromyography (EMG) is a recording of the skeletal
muscle activity of the body. It is routinely used by clinicians
for analysis of the skeletal muscle activity and diagnosis of
diseases of the neuromuscular system. EMG may be recorded
invasively by using needle electrodes inserted directly into
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the muscle through the skin or alternatively may be recorded
from the surface of the skin without any invasion of the body.
The former is generally referred to as needle EMG while the
latter as Surface EMG (sEMG).

Needle EMG recording provides a more exact representa-
tion and finer resolution of the electrical activity of muscle
fibers than is possible with sEMG. This is because the
sEMG signal is a summation of non-synchronous action
potentials of a large number of muscle fibers that have been
non-linearly attenuated by body tissue between the target
muscle and the skin surface, due to the frequency dependent
electrical properties of the tissues [1], [2].

As muscle force increases, the number of active motor
units increases, referred to motor unit recruitment. Motor
unit recruitment is dependent on both the load and the
current fatigue status of the muscle, thus introducing a
time dependency in the sEMG signal as muscle loading
progresses. There is a large variance from subject to subject,
due to difference in tissue thickness, electrode location and
distribution of the motor unit conduction velocities [3].

Despite the complex nature of the signal, sEMG recordings
can be used to extract a useable representation of muscle
status. Surface EMG is used to analyze the strength of
muscle contraction, to study muscle state and fatigue and to
identify possible muscle disorders. Research analysis aimed
at extraction of local muscle fatigue information has been
frequently based on the observed shift of the power spectral
density of the sEMG [2], [4].

The most common EMG features used to assess fatigue
are the root mean square (RMS) amplitude [5], the mean
or median frequency (MDF) and the power spectral density
(PSD) [6]. Fatigue is associated with an increase in the EMG
RMS amplitude and a compression of the PSD towards the
lower frequencies [7]. However, RMS and MDF methods
have shown inconsistent patterns when applied to lower
level contractions [8], [9], [10], [11]. In particular, Oberg
found that MPF did not change with muscle fatigue at low
contraction levels.

Muscle fatigue has been described in terms of motor
unit recruitment patterns [12]. It has been explained that
recruitment changes and motor units appear to become
synchronized with the onset of localized muscle fatigue.

Modeling studies have found that the spectral shift to
lower frequencies (and the related drop in median frequency
(MPF)) is countered by a reduction in the conduction velocity
(CV) [13]. During low-level bicep voluntary contractions,
MF also drops, but the CV remains the same. Kleine posits
that changes in the firing pattern, particularly synchroniza-
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tion, must be responsible for the spectral shift to lower
frequencies not attributable to a conduction velocity change
[12]. During fatigue, the motor unit firing patterns become
more synchronous (firing at almost the same time) than is
expected by chance. In the fatigue state, the central drive to
a muscle has to increase, leading to synaptic input that is
common to more than one neuron. This leads to increased
synchronicity. While widely accepted, there appears to be
lack of proof of the synchronization of motor units underpin-
ning the localized muscle fatigue [14]. This paper reports our
research that has attempted to test the motor unit recruitment
hypothesis.

II. THEORY

To test the hypothesis that there is synchronization of
motor units with the onset of muscle fatigue, this paper
reports identifying the change in the level of dependence
of motor units within a muscle. If there is an increase in
the level of dependence of muscle activity recorded from
different sites in the same muscle with the onset of muscle
fatigue, it would indicate that the activity from these two
locations has become synchronized. Electrode pairs that are
co-located in the length of the muscle and separated across
the spread of the muscle would record activity from multiple
motor units, and may have high degree of cross talk.

Naik et al [15], [16] have demonstrated that the depen-
dence of multiple sources can be determined using indepen-
dent component analysis (ICA). Their work has demonstrated
that the determinant of the global matrix is an indicator of the
dependence of the sources. If the sources are independent,
the determinant value is close to unity while when there is
dependence between the sources, this value becomes close to
zero. Based on this principle, it is hypothesized that when the
muscle is not fatigued, the determinant of the global matrix
generated by ICA would be close to unity, and when the
muscle is fatigued, this would reduce and should become
close to zero.

A. ICA theory

ICA is an iterative technique used to estimate statistically
independent source signals s = [s1,s2, ...,sn]T from a given
set of their linear mixtures x = [x1,x2, ...,xn]. If the mixing
process is assumed to be linear, it can be expressed as:

x(t) = As(t) (1)

A is the N × M scalar matrix representing the unknown
mixing coefficients and it is called transfer or mixing matrix.
The goal of ICA is to find a linear transformation W of
the dependent sensor signals x(t) that makes the outputs as
independent as possible:

ŝ(t) = Wx(t) (2)

where ŝ(t) is an estimate of the sources. The sources are
exactly recovered when W is the inverse of A up to a
permutation and scale change. Since both the sources and
the mixing coefficients are unknown, it is impossible either

to determine the variances or the order of the independent
components.

G is the global matrix and is the product of the mixing
matrix with the estimated unmixing matrix. After sorting the
order ambiguity between the mixing and unmixing matrix,
under ideal conditions, this matrix should be a unity matrix
and the determinant should be unity [15], [16]. If the
recordings are not all independent, the determinant of this
matrix is no longer unity and is close to zero. This can be
used as an indicator of the dependence of the input to the
system.

One shortcoming of this is that it requires prior knowledge
of the mixing matrix, which in real situations is not possible.
To estimate G, one option is to use the sub-band ICA.

B. Sub-band ICA

Sub-band ICA, an extension of ICA. It assumes that
each source is represented as the sum of some independent
subcomponents and dependent subcomponents, which have
different frequency bands. Wide-band source signals are a
linear decomposition of several narrow-band sub components
s(t) = s1(t)+s2(t)+s3(t), . . . ,sn(t). Such decomposition can
be modeled in the time, frequency or time frequency domains
using any suitable linear transform. We obtain a set of un-
mixing or separating matrices: W1,W2,W3,. . . ,Wn where W1
is the un-mixing matrix for sensor data x1(t) and Wn is the
un-mixing matrix for sensor data xn(t). If the specific sub-
components of interest are mutually independent for at least
two sub-bands, or more generally two subsets of multi-band,
say for the sub band “p” and sub band “q” then the global
matrix

Gpq = Wp ×W−1
q (3)

will be a sparse generalized permutation matrix P with
special structure with only one non-zero (or strongly domi-
nating) element in each row and each column [17].

III. METHODOLOGY

A. Recording Equipment

Surface Electromyography was recorded using BIOPAC
100 (California, USA), a proprietary sEMG acquisition sys-
tem. Prior to placing the electrodes the participants’ skin was
cleaned using mild soap. The following parameters were used
during the recording:

• Preamplifier Gain: 2000
• Low Pass Filter: 500Hz
• High Pass Filter: 10Hz
• Notch Filter: 50dB at 50Hz
• Sampling frequency: 1500

Two-channel SEMG were recorded from biceps muscles
using surface electrodes during isometric contractions. The
placement of electrodes is shown in Figure 1.
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Fig. 1. Placement of electrodes for the experiments

B. Experimental protocol

Four healthy volunteer subjects participated in the trial.
The experimental protocol was approved by the Human
Ethics Committee of RMIT University. One pair of elec-
trodes was placed on either side of the biceps muscle to
acquire a two-channel recording of sEMG. The subject
performed isometric contraction using fixed standard load.
The load was chosen to be about 75% maximum voluntary
contraction. The sEMG was recorded throughout the exper-
iment until the subject complained of muscle fatigue. The
typical time period of each recording was 180 seconds.

C. Data Analysis

The sEMG signals recorded during the period were an-
alyzed using ICA techniques to detect localized muscle
fatigue. Initially the FastICA MATLAB software was used
to separate the sources. This is a known application of ICA,
used to reduce crosstalk prior to calculating the amplitude
features (RMS). The determinant of global matrix generated
using ICA was then used as an indicator for identifying the
number of active sources and localized muscle fatigue.

TABLE I
MEDIAN FREQUENCY OF RECORDED SURFACE ELECTROMYOGRAM OF

THE TWO SEMG CHANNELS, BEFORE AND AFTER FATIGUE

Before fatigue After Fatigue
Subject Channel Channel

1 2 1 2
1 55 67.7 71.2 59.2
2 56.8 59.2 47.1 50.1
3 57.4 57.4 48.7 48.9
4 80.9 67.1 80.1 69.4

Mean 62.53 62.85 61.78 56.9

IV. RESULTS AND OBSERVATIONS

The results are tabulated in Tables I, II and III. Table I
shows the calculated median frequency of sEMG (2 chan-

TABLE II
RMS OF RECORDED SURFACE ELECTROMYOGRAM FOR THE TWO

CHANNELS

Before fatigue After Fatigue
Subject Channel Channel

1 2 1 2
1 1.1113 1.0031 1.5246 2.6763
2 1.0051 1.0476 1.9573 1.1848
3 1.0112 1.0005 2.4577 1.9825
4 1.1002 1.0455 1.9573 2.2843

Mean 1.057 1.0242 1.9742 2.032

nels) during initial (prior to fatigue) and final (following
fatigue) data segments. Table II shows the RMS values of
sEMG (2 channels) for initial and final segments of the iso-
metric contraction after source separation using ICA. Table
III shows the value of the determinant of the global matrix,
calculated to determine the dependency properties using
ICA. From Table I, it is evident that the median frequency
of neither channel reveals clear information regarding the
synchronization and dependency properties of the muscle
during fatigue.

Preliminary analysis of the RMS values calculated from
the separated sources (Table II) shows a general trend of
increasing amplitude after fatigue for both channels. How-
ever, the RMS value alone does not reveal much about
the synchronicity of the motor units, only that the work
required to produce the same force is increasing as the
muscle becomes fatigued.

It is posited here that the model of motor unit syn-
chronicity during fatigue can be tested by determining the
dependence of the recorded signals. In order to confirm the
dependant properties of sources as explained in theory, a
Global matrix was computed. The determinant of the global
matrix is an indicator of the dependence of the sources. If
the sources are independent, the determinant value is close
to unity, whereas when there is dependence between the
sources, this value becomes close to zero [18].

The example of global matrix is shown below:
• Isometric contraction (Before fatigue)

GlobalMatrix(G) =
(

0.8345 −0.3456
0.4560 0.7241

)

det(G) = 0.7619 (Independent)
• Isometric contraction (After fatigue)

GlobalMatrix(G) =
(

0.0083 0.0100
−0.0023 0.1773

)

det(G) = 0.0015 (Dependent)
From Table III, it is observed that the determinant of the

global matrix for all subjects is close to unity before fatigue
and this moves closer to zero once the subject becomes
fatigued. This shows that when the muscle is not fatigued,
the motor units are firing independently and when the muscle
is fatigued, the motor units are dependant and therefore more
synchronized.
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TABLE III
VALUE OF THE DETERMINANT OF THE GLOBAL MATRIX

Subject Before fatigue After Fatigue
1 0.7619 0.0015
2 0.7684 0.0012
3 0.7856 0.0013
4 0.7731 0.0016

Mean 0.7723 0.0014

V. DISCUSSION AND CONCLUSION

Many research groups have reported a link between sEMG
spectrum (or median frequency) and fatigue. Fatigue has
been associated with a spectral shift towards lower frequen-
cies. However, it has been reported that that MPF does
not change with muscle fatigue at low contraction levels
[11]. Modeling studies have shown during low-level bicep
voluntary contractions, the motor unit conduction velocity
does not reduce, as is generally observed during high level
contractions. In the fatigue state, the central drive to a muscle
has to increase, leading to synaptic input that is common to
more than one neuron. This has been explained in literature
based on increased synchronicity in the motor unit firing
patterns.

The work presented here has attempted to prove the motor
unit synchronization model by associating synchronicity with
dependence. In a non-fatigued state, the motor units in a
contracting muscle will fire almost randomly in order to
ensure smooth movement. Surface EMG taken from two
channels should therefore reveal independence from each
other. The determinants calculated using the global matrix
has confirmed that the sEMGs taken in the non-fatigued state
are independent from each other.

Alternatively, the determinant calculated using the global
matrix on the fatigued sEMGs shows dependence. These
results support the contention that motor unit synchronicity
increases in the fatigued state.

To compare results with earlier work, the RMS and MPF
before and after fatigue were also calculated. The MPF result
supports the spectral compression of the signal after the onset
of muscle fatigue. The RMS results indicate an increase in
the RMS with the onset of muscle fatigue.

Based on literature, the human bicep muscle recruits
additional muscle fibers as force increases, up to around
88% MVC. Above 88% MVC, the frequency of motor unit
firing increases to allow muscle force output to modulate
up to the maximal contraction force [19]. However, both
an increase in motor unit firing rate and an increase in
the number of active motor units can increase the signal
amplitude (represented by RMS). As these experiments were
conducted at 75% MVC it is not clear which of these factors
the increase in RMS is related to. However, during fatigue,
it is acknowledged that increased effort is required to sustain
the same force level; a point which is reflected in the uniform
RMS increases calculated here. Although a confirmation of
known results, this RMS increase does not contribute to the
practical knowledge regarding motor unit synchronization.

Of the three features studied here; RMS, MPF and inde-
pendence, independence offers the most information about
motor unit synchronization. As the global matrix showed a
clear independence before fatigue and dependence following
fatigue, it can be concluded that this practical study goes
some way to confirming the theories proposed in the motor
unit synchronization model. It may also be a useful indicator
of muscle fatigue, although easy implementation of this
would need to be considered for real time applications.
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