
  

  

Abstract— This paper investigates the use of machine 

learning to predict a sensitive gait parameter based on 

acceleration information from previous gait cycles. We 

investigate a k-step look-ahead prediction which attempts to 

predict gait variable values based on acceleration information 

in the current gait cycle. The variable is the minimum toe 

clearance which has been demonstrated to be a sensitive falls 

risk predictor. Toe clearance data was collected under normal 

walking conditions and 9 features consisting of peak 

acceleration and their normalized occurrences times were 

extracted. A standard least squares estimator, a generalized 

regression neural network (GRNN) and a support vector 

regressor (SVR) were trained using 60% of the data to 

estimate the minimum toe clearance and the remaining 40% 

was used to validate the model. It was found that when the 

training data contained data from all subjects (inter-subject) 

the best GRNN model provided a root mean square error 

(RMSE) of 2.8mm, the best SVR had RMSE of 2.7mm while 

the standard least squares linear regression method obtained 

3.3mm. When the training and test data consisted of different 

subject examples (inter-subject) data, the linear SVR 

demonstrated superior generalization capability 

(RMSE=3.3mm) compared to other competing models. 

Validation accuracies up to 5-step look-ahead predictions 

revealed robust performances for both GRNN and SVR 

models with no clear degradation in prediction accuracy.   

I. INTRODUCTION 

ait analysis is the biomechanical study of the lower 

limbs during locomotion. Clinicians have been 

frequently faced with the daunting prospect of processing 

and interpreting large volumes of data usually collected 

over several gait cycles. A recent paradigm which is gaining 

recognition for dealing with large data in this field is 

machine learning; which comprises computational 

intelligence techniques such as artificial neural networks, 

support vector machines and fuzzy methods [1].  

These techniques permit the modeling of relationships 

between measured quantities, e.g. limb displacements and 

the required information of interest e.g., maximum joint 

angles or peak ground reaction forces. They have been 

successfully applied to many problems such as detecting 
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quadriceps muscle activity [2] and in predicting joint angles 

and limb kinematics [3]. Recent work by Findlowa et al. 

focused mainly on predicting entire gait data curves by 

feeding the data series into a regression model. The 

technique exhibited a high degree of success for intra-

subject data (training and testing data were from the same 

group of subjects) but poor generalization to inter-subject 

(training and testing data from different groups of subjects) 

predictions. It required large input data dimensionalities 

and the predicted curves still had to be post processed to 

obtain the gait variables of interest i.e., limb kinematics.  

 In this work, we investigate the use of machine learning 

to predict gait variable values based on a k-step look ahead 

procedure. The idea is to model the relationships between 

accelerations in the current gait cycle and the value of a gait 

variable k gait cycles ahead under the assumption that the 

subject walks the further k-steps. We focus on the prediction 

of the minimum toe clearance (MTC), a parameter which 

has been demonstrated to be a sensitive falls risk predictor 

[4]. In this preliminary paper, we use toe acceleration data 

obtained from toe displacement measurements made by a 

highly accurate video capture system. The generalized 

regression neural network (GRNN) and Support Vector 

Regressor (SVR) were then compared against the ordinary 

least squares regression to assess their effectiveness. 

 Section II details the data collection methods, 

preprocessing and provides a brief background of the 

machine learning methods investigated. Section III provides 

the experimental results followed by discussions and 

conclusions.  

 

                    
Figure 1: Experimental setup for monitoring toe displacement data with the 

Optotrak system.  
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II. METHODS 

A. Gait Data Collection 

Experiments were performed in the Biomechanics 

Laboratory of Victoria University and gait data was 

collected from 5 healthy subjects (4 male and 1 female) who 

were 28-35 years of age. The subjects had no prior gait 

disabilities. Data collection was performed with the 

Optotrak Certus NDI video camera system sampled at 

150Hz. Subjects wore a rigid marker body on the right foot 

and a virtual point was placed at the distal shoe 

representing toe motion (Figure 1).  

The subjects walked on a treadmill at three speeds, 

namely 2.5, 3.5 and 4.5km/h for 5 minutes so that at least 

100 gait cycles were collected. The toe off gait events were 

detected and used to mark consecutive gait cycles. The 

MTC points were extracted using a gradient algorithm and 

visually checked. Briefly, the MTC point is defined as the 

minimum point between the Max 1 and Max 2 peaks 

(Figure 2). It is the lowest point during the mid-swing phase 

of the gait cycle.  

B. Feature Extraction  

Each gait cycle was differentiated twice to obtain the 

acceleration graph. The acceleration series was then low-

pass filtered (cut-off frequency 12Hz) twice using a 2nd 

order Butterworth filter to ensure zero phase shift and to 

remove differentiation noise [5]. Filtering was achieved 

using the MATLAB v7.1 filter toolbox.  

For each gait cycle acceleration graph, five major peaks 

were detected, namely AVMAX1, AVMAX2, AVMAX3, 

AVMIN1 and AVMIN2 (Figure 3). The normalized time to 

peak 
peak

t was calculated as follows: 

 100%
peak

peak

total

n
t

n
= ×  (1.1) 

where 
peak

n was the number of samples from toe off to 

where the peak occurred and 
total

n was the number of 

samples in the gait cycle. Four periods, 
1 4
t t−  

corresponding to the occurrences of AVMAX2, AVMAX3, 

AVMIN1 and AVMIN2 were extracted. The time due to toe 

off acceleration was the origin point and hence not 

included. Each example or feature vector then consisted of 9 

features.  

 A total of 2325 gait cycles were obtained from the five 

subjects with each subject averaging 465 consecutive gait 

cycles. 5 datasets labeled D1-D5 were formed from this data 

as follows; for Dk the MTC value for gait cycle n was paired 

with acceleration features from gait cycle n-k so that dataset 

D1 contains data examples where acceleration information 

from gait cycle n-1 is used to predict the MTC at gait cycle 

n. The data was then divided into training and test sets 

under two conditions. In the first condition, both training 

and test sets contained examples from all subjects (intra  
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Figure 2: Sample toe displacement graph obtained from Optotrak system with 

the MTC, Max1 and Max2 points marked.  
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Figure 3: Sample acceleration graph corresponding to Figure 1 obtained by 

double differentiation and zero phase low pass filtering. The extracted features 

are marked and shown.   

 

-subject condition) while in the second condition, the 

training and test sets were from different subjects (inter-

subject condition). Train and test ratios were fixed to 3:2.    

C. Regression Models 

The dataset can be represented as training pairs 

1 1{( , ),..., ( , )}
n n

Dk y y= x x where 
i

y  is the MTC value k-

steps ahead and 
i

x the feature vector for the current gait 

cycle. The following regression models were investigated in 

this paper: 

 

1) Least Squares Regression 

The standard least squares regression was implemented in 

MATLAB. The following least squares problem was solved 

using matrix inversions: 

       

    2
min ( )

T

i i

i

y −∑ w x                                  (1.2) 

where w is the vector of weights or the solution of  (1.2). 

 

2) Generalized Regression Neural Networks (GRNN) 

The GRNN model consists of a radial basis layer and a 

special linear layer [6]. The estimated MTC value y%  is 

obtained by solving the following equation: 
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where σ is the width of the radial basis function. The 

GRNN was implemented in MATLAB which required the 

user to select a parameter known as the spread, s. The 

spread is defined as the distance an input vector must be 

from the neuron weight vector to be 0.5.  In our 

experiments, the network was trained for spread values of 1 

to 50 in steps of 0.2. The training results are depicted in 

Figure 3 and Figure 4 for both inter-subject and intra-

subject conditions and the GRNN models with the lowest 

training error was selected.  

 

3) Support Vector Machine Regression 

 

The Support Vector Regressor (SVR) is a realization of 

Vapnik’s Structural Risk Minimization theory [7]. We 

employ Vapnik’s ε -insenstive loss SVR model where the 

MTC corresponding to feature vector x is predicted by  

 ( ) ( ),
i i

i

y K bα= +∑x x x%  (1.4) 

 where 
i

α are Lagrangian multipliers obtained by solving: 

 

1
min

2

subject to: -C C, 0

TT T

T

α
ε

α

+ −

≤ ≤ =

α Kα α 1 α y

α 1

 (1.5) 

Here the SVR parameters to be selected are ε the width of 

the insensitive zone, the regularization parameter C and the 

kernel function ( ),K x z  which maps input feature vectors 

to a usually higher dimensional feature space. In this work, 

we used the linear, polynomial and Gaussian kernels 

defined as: 

2

( , )

( , ) ( 1)
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with Gaussian widths, s=0.5,0.05 and 0.005 and polynomial 

degree d=2,3 and 4. For each kernel setting, the SVR was 

trained and tested over C=0.1,1,10,100,1000 and 

0.1 0.8ε = − in steps of 0.1. Due to space constraints only 

the SVR model for each kernel which gave the highest test 

set accuracy is reported.  

III. EXPERIMENTAL RESULTS  

The training results in Figure 4 indicate that the GRNN 

network achieved minimum training error for spreads in the 

region of s=10 with minimum root mean square error of 

3.00mm. The trend was similar for 2-step to 5-step look-

ahead predictions with the intra-subject data. In Figure 5, 

the best GRNN performances were located for models with  
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Figure 4: Training error of the GRNN as network spread is varied 

for intrasubject data for k=1-5. 
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Figure 5: Training error of the GRNN as network spread is varied 

for intersubject data for k=1-5. 

s=16 and the average minimum RMSE was 4.03mm. The 

trend of the training errors were also similar for k=1 to k=5 

for the inter-subject data. 

Table I depicts the best test data results for the three 

regression models for the intrasubject data. The least 

squares regressor achieved an average RMSE of  3.38mm 

across the k-steps, the GRNN achieved 3.12mm average 

RMSE while the polynomial SVR achieved average RMSE 

values of 3.16mm for predictions of MTC values based on 

the previous k gait cycle acceleration features.  When 

intersubject data was used, the average RMSE were found to 

be increased for the standard least squares regressor 

(3.43mm)  and GRNN (4.14mm) as seen in Table II. The 

SVR models achieved lower RMSE values with the best 

model being the linear SVR model (average 

RMSE=3.34mm) followed by the Gaussian and polynomial 

models.  

IV. DISCUSSION 

The results demonstrated that both the GRNN and SVR 

methods can be used to predict the MTC values to a very 

high degree of accuracy. Good prediction results were 

achieved for intra-subject data, however the accuracies were 

decreased for all models in the inter-subject  This finding 

lends some evidence that the SVR possesses superior 
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TABLE 1: ROOT MEAN SQUARE ERROR (MM) FOR  INTRA-SUBJECT EXPERIMENTS FOR K-LOOK AHEAD PREDICTION OF MINIMUM TOE CLERANCE VALUES 

k  1 2 3 4 5 

LS Regression 3.30 3.42 3.30 3.30 3.59 

GRNN 3.00 3.20 3.02 3.00 3.40 

SVR Linear 3.25 3.43 3.30 3.39 3.59 

SVR Gaussian 3.01 3.38 3.11 3.19 3.36 

SVR Polynomial 3.27 3.22 2.97 3.01 3.35 
 

TABLE 2: ROOT MEAN SQUARE ERROR (MM) FOR INTER-SUBJECT EXPERIMENTS FOR K-LOOK AHEAD PREDICTION OF MINIMUM TOE CLERANCE VALUES 

k 1 2 3 4 5 

LS Regression 3.43 3.41 3.43 3.42 3.46 

GRNN 4.08 4.03 4.15 4.20 4.24 

SVR Linear 3.29 3.33 3.37 3.36 3.37 

SVR Gaussian 4.00 3.79 3.51 3.82 3.82 

SVR Polynomial 3.97 4.21 3.60 3.89 3.98 

generalization capabilities and would be our first choice for 

future work. The poorer performance of the GRNN among 

the models could be attributed to the fact that like most 

neural network architectures, it is also affected by local 

minima resulting in sub-optimal models.  

The overall results however indicate that there is lower 

variability in the subject’s gait since the accuracy of 

predictions do not significantly change across the prediction 

horizon. The methods are encouraging but further work is 

required to ascertain the extensibility of these methods. 

Firstly a larger subject population is required to obtain an 

increased variability in gait data. In addition, different 

subject populations such as the young and elderly or 

subjects with pathological gait are hypothesized to pose 

greater challenges for these methods.  

If further work is successful, these methods can be 

applied to research in wearable sensor technologies for 

monitoring human motion. For example, current inertial 

sensors such as accelerometers and gyroscopes suffer from 

drift errors which affect the derivation of linear velocity and 

displacement [8]. Several solutions have been proposed 

which neither fully achieves the accuracies expected by 

clinicians nor into account the fact that clinicians are 

frequently only interested in specific gait variables, such as 

maximum foot plantar-flexion or maximum heel ground 

reaction force for analysis. 

V. CONCLUSION 

Machine learning techniques such as the GRNN and 

SVR have been found to be powerful predictors for the 

minimum toe clearance using peak acceleration features and 

normalized time values. The results are promising because  

the techniques do not require large computational overhead 

and can be applied in onboard implementations of wearable 

sensor and actuator technologies.  

VI. REFERENCES 

[1] R. Begg, D. Lai, and M. Palaniswami, 

Computational Intelligence in Biomedical 

Engineering. Boca Raton, Florida, USA: Taylor & 

Francis Books Inc., 2007. 

[2] Z. M. Nikolic and D. B. Popovic, "Predicting 

Quadriceps Muscle Activity During Gait with an 

Automatic Rule Determination Method," IEEE 

Transactions of Biomedical Engineering, vol. 45, 

pp. 1081-1085, 1998. 

[3] A. Findlowa, J. Y. Goulermas, C. Nester, D. 

Howard, and L. P. J. Kenney, "Predicting lower 

limb joint kinematics using wearable motion 

sensors," Gait and Posture, vol. 28, pp. 120-126, 

2008. 

[4] D. T. H. Lai, R. K. Begg, S. Taylor, and M. 

Palaniswami, "Detection of tripping gait patterns 

in the elderly using autoregressive features and 

support vector machines," Journal of 

Biomechanics, vol. 41, pp. 1762-1772, 2008. 

[5] D. A. Winter, Biomechanics and Motor Control of 

Human Movement, 3 ed.: Wiley, 2004. 

[6] D. Specht, "A general regression neural network," 

IEEE Transactions on Neural Networks, vol. 2, pp. 

568-576, 1991. 

[7] V. N. Vapnik, The nature of statistical learning 

theory, 2nd ed. New York: Springer, 2000. 

[8] D. T. H. Lai, R. Begg, E. Charry, M. Palaniswami, 

and K. Hill, "Measuring toe clearance using a 

wireless inertial sensing device," in International 

Conference on Intelligent Sensors, Sensor 

Networks and Information Processing (ISSNIP). , 

2008, pp. 375-380. 

387


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

