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Abstract— ECG denoising has always been an important 

issue in medical engineering. The purposes of denoising are 
reducing noise level and improving signal to noise ratio (SNR) 
without distorting the signal. This paper proposes a method for 
removing white Gaussian noise from ECG signals. The 
concepts of singularity and local maxima of the wavelet 
transform modulus were used for analyzing singularity and 
reconstructing the ECG signal. Adaptive thresholding was used 
to remove white Gaussian noise modulus maximum of wavelet 
transform and then reconstruct the signal. 

Keywords— ECG Denoising, Wavelet Transform, singular 
points, Lipschitz exponents. 

 

I. INTRODUCTION 

CG signals are originated from the electrical activities 
and stimulate the heart muscles. Signals generated from 

these activities distribute in body and are picked up by 
especial electrodes placed on skin. On the route to the pick 
up points, the signal passes a variety of tissues with different 
characteristics. In addition to deformations due to inherent 
non-linear model of the paths, the ECG signal receives 
contamination from electrical disturbances of alternate 
sources; including but not limited to EMG, thermal noise 
and radio frequency interference (RFI). It is common 
practice to model the unwanted noise by white Gaussian 
noise.  

 ECG denoising has always been an important issue in 
medical signal processing. The goal of denoising is 
decreasing the noise and increasing SNR; while preserving 
as much of the information in the signal as possible [1] 

Various approaches have been used to remove Gaussian 
white noise [1-3]. We used singular point properties based 
on wavelet transform to remove the noise. Singular points 
carry much of the information content in any signal [4].  

We used wavelet to detect singular point. Adaptive 
thresholding removes the singular points of noise and then 

the signal is reconstructed.  
 
The organization of this paper is as follows: In section II we 
briefly introduce ECG signal. Methodology is the subject of 
section III, in this section, biorthogonal quadratic spline 

wavelet and its usage for proposed method have been 
concisely  introduced. Readers can refer to [8][9] for more 
details. In section IV we present our method and compare it 
with other wavelet based method. Finally, summary and 
conclusion are provided in section V. 

II. THE HEART’S ELECTRICAL CONDUCTION 
SYSTEM 

Heart is a muscle tissue that pumps blood into body. This 
multi-cavity compound pump needs a source of stimulation 
to trigger the involved cavities. An inborn electrical 
conduction system issues these stimulations.  

 

Fig. 1.Synthetic ECG data[5], a) Noise free ECG   b) noisy ECG 
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Each beat of the heart generates a series of deflections 
from the baseline on the ECG. These deflections show the 
electrical activity in the heart causing muscle contraction.  
There are some turning points in each cycle of ECG labeled 
sequentially with the letters P, Q, R, S, and T[5] (Fig. 1,a).  

III. MATERIALS AND METHODS 

A. Wavelet Transform 

The wavelet transform of 2 ( )x L R∈  at time u and scale 
s is defined as: 

E 
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(*) denotes the complex conjugate. ( )tψ  is known as 
mother wavelet or wavelet function. For discrete application 
the scale factor is selected from dyadic sequence 

2 js = ( ,j Z∈ Z  is the integers set). Depending on the 
application, particular initial conditions and specific 
properties are used to create suitable mother wavelets. The 
wavelet we used is categorized as a biorthogonal quadratic 
spline wavelet with compact support and one vanishing 
momentum. This wavelet is suitable for detecting singular 
points. The Fourier transform of this wavelet is: 
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The dyadic wavelet of a digital signal ( )x n can be calculated 
with two analyzing and synthesizing filter banks. These two 
filter banks can be implemented using three discrete filters 
h, g and k with Fourier transforms[6-7]: 
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The analyzing filter bank j

aF  consists of J+1 filters, 
defined as:  
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The wavelet coefficients of signal ( )x n are the outputs of 

these filters. With these filters we can decompose ( )x n as 
follows: 
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where (*) denotes convolution operator and 

 can be calculated by convolving (2 , ), (2 , )j
x xW n S j n
( )x n and time domain coefficient of the filter j

aF (denotes 

by j
af ) 
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Synthesizing filter bank is defined as follows: 
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B. Singular points 
Reference [4] shows that most of the signal information is 

carried by its irregular structures and singular points. In 
mathematics, singularity is often consider as opposite of 
smoothness and can be measured by Lipschitz exponentα . 

A function x is point wise Lipschitz 0α≥ at v, if there 
exists , and polynomial 0K> vp of degree m α⎢ ⎥= ⎣ ⎦   

( α⎢ ⎥⎣ ⎦ defines largest integer m α≤ ) such that 
 

,  | ( ) ( ) | | | .vt R x t p t K t v α∀ ∈ − ≤ −              (1) 
 

A function is uniformly Lipschitz α over if it 

satisfies (1) for all 

[ , ]a b
[ , ]v a b∈  with a constant K that is 

independent of v. The Lipschitz regularity of x at v or over 
 is sup of the [ , ]a b α such that f is Lipschitz α . If f is 

uniformly Lipschitz mα >  in the neighborhood of v, it can 
be verified that x, is m times continuously differentiable in 
this neighborhood and if 1α <  at v, then x is not 
differentiable and v is a singular point [8]. With wavelet this 
singularity can be detected. 

C. Detection and Reconstruction 
The relation between the singular points of signal and 

wavelet is explained below: 
Let n be a strictly positive integer. Let ( )tψ be a wavelet 

with compact support, n vanishing moments and n times 

continuously differentiable. Let   1( ) ([ , ])( | ( )| ).
b

x t L a b x t dt
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  If there exists a scale  such that for all scales 0 0s >

0s s< and ] , [x a b∈ .  has no local maxima, then for any | ( , )|W s tx
0ε > and  nα< , x(t) is uniformly Lipschitz α in ] ,a b [ε ε+ − . 
Therefore, assuming that ( )tψ is the n-th derivative of a 

so-called smoothing function, it can be shown that singular 
points can be detected by modulus maxima of the wavelet 
(see [8]). Once these singular points are known, straight 
forward optimization techniques can be employed to 
reconstruct the signal. 

 

IV. PROPOSED METHOD  
An important step in wavelet denoising is the comparison 

of the wavelet coefficients of the signal transform with 
thresholds. Based on this comparison, these coefficients will 
be adjusted to obtain the wavelet coefficients of transform of 
a less noisy signal.  

Let the noisy signal be NECG ECG Nσ= + , where N is 

white noise with zero mean and variance 2σ . Normally 
either hard or soft thresholding on coefficients of the 
discrete wavelet transform (WT) is used to suppress the 
noise. Assume that ,j kd represent the coefficients of WT in 

scale j . Appropriate hard or soft thresholding can give us 

,
ˆ

j kd  which are an approximation of the coefficients of de-

noised transform.  
In hard thresholding  
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         Fig. 3.  Modulus maxima of Wavelet coefficient of ECG 
i l

 
         Fig. 2.  Wavelet coefficient of ECG signal in different scale.

where threshold t is given by  2log Nσ and N is the 

number of samples and [10]. 

Inverse WT of 

( ) / 0.67451,median d kσ =

,
ˆ

j kd  recovers a less noisy ECG. 

In our proposed method this thresholding is applied on 
individual modulus maxima of wavelet transform and thus 
develop a method to reduce white noise from ECG signals.  

The ECG signal is first decomposed [9] in various scales 
(see figure 2, 3, 4 and 5). Figure 5 shows that Noise 
modulus Maxima is only visible on Lower scale and 
amplitudes of these modulus maxima is smaller than ECG 
modulus Maxima so if we remove modulus maxima smaller 
than a threshold (see figure 6) and reconstruct signal (figure 
9), white noise can be suppressed. 

In order to evaluate our method and compare it with 
conventional wavelet method, we have calculated signal to 
noise ratio (SNR) of our results, with different white noises 
in -6db to 6db range. After denoising with the proposed 
method, output SNR was evaluated. Input SNR was  

 
        Fig. 4.  Wavelet coefficient of noisy ECG signal in different  

evaluated as: 
|| ||

10log10 || ||

ECGoriginalSNRinput N
=  

|| ||originalECG  is power of original ECG signal and ||  

is power of white noise. The output SNR is calculated by 
equation:  

||N
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         Fig. 7. SNRout Versus SNRinput of WT and proposed 

 

 
         Fig. 5. modulus maxima of Wavelet coefficient of noisy ECG    
signal 

 

 
In figure 7, we have compared our method with common 

wavelet method. We have use Daubechies 6 in common 
wavelet method which has best result among other wavelets. 
In this figure, the output SNR vs. input SNR is plotted and, 
the results show the effectiveness of our proposed method 
objectively. 

Figure 8 shows that this method does not change the 
morphology of ECG for visual assessment. 

V. CONCLUSION 
Based on wavelet transform and singular points a new 

method was developed to reduce white noise from ECG 
signal. Quadratic spline wavelet was used to detect singular 
points of ECG and thresholds were set to remove noise. 
Finally the SNR of output signal was evaluated. Objective 
and visual assessment of the result have shown effectiveness 
of propose method. 

Proposed method have been used for denoising ECG 
signal, However it can be used as general method in other 
areas of signal processing. 

 

 
Fig. 8. a) Noisy ECG, b) De-noising by WT with soft thresholding, c) 
Denoising by WT with hard thresholding, d) Denoising by modulus 
maxima with soft thresholding, e) Denoising by modulus maxima 
with soft thresholding. 

 
 Fig. 6. Modulus maxima of Wavelet coefficient of noisy ECG signal 
after soft thresholding. after thresholding 
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