
  

  

Abstract— In this paper an over-complete discrete wavelet 
transform (OCDWT) algorithm, obtained by blending two 
wavelet transform implementations that is redundant wavelet 
transform and the Mallat’s multiresolution decomposition, has 
been proposed to retrieve the time-varying characteristics of 
HRV under two different postures, supine and standing. The 
OCDWT algorithm is critically sub-sampled to a given level of 
decomposition, below which it is then fully sampled. Five 
subjects were included to investigate posture-related HRV. The 
results showed that the high frequency fluctuations are larger 
in supine and get significantly reduced in standing in 
comparison to low frequency variations. Moreover, the very 
low frequency heart beat fluctuations during supine were 
greater than during standing. Further a comparative analysis 
has also been made between the Mallat’s and OCDWT 
implementation in order to show the superiority of proposed 
algorithm. 

I. INTRODUCTION 
HE period of heart beat is not constant and changes over 
time. These variations in heart rates and their respective 

periods are called heart rate variability (HRV). The heart 
beat fluctuations in low frequencies is jointly mediated by 
the sympathetic and parasympathetic nervous systems and 
the fluctuations in high frequencies are mediated by the 
parasympathetic nervous system and are synchronized with 
respiration [1]. With the increase in popularity of HRV 
studies, it has become a subject of interest in biomedical and 
clinical research in the past years [2]. A great number of 
tools and new methods of processing are continuously 
emerging to indirectly access the biological mechanisms 
underlying the cardiovascular activity under normal and 
pathological conditions. Out of all these the wavelet 
transform (WT) has been rapidly finding application as a 
tool for the analysis of non-stationary biomedical signals, 
data compression and fast computations [3]. However, the 
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most commonly used implementation of the WT: the 
critically sampled discrete wavelet transform (DWT), is shift 
variant or aliased transform and so it is unsuitable for many 
signal analysis applications. More narrowly, it may 
introduce undesirable artifacts for the analysis of biomedical 
signals and images [4]. Therefore, to enable applications 
such as signal analysis, texture analysis, and edge detection, 
a redundant wavelet transforms have been used in the 
literature [3]-[6]. In this paper critically sampled DWT and 
redundant WT are blended together to utilize an OCDWT 
for deciphering postural related changes in HRV. The 
OCDWT method used in this paper has not been assessed 
for HRV studies earlier. Further, a comparative study has 
also been made between DWT and OCDWT algorithms 
using DB-6 and DB-3 basis functions, to illustrate the 
dominance of OCDWT in reflecting the changes in HRV 
during supine and sitting postures, related to physical 
activity [7], [8]. Moreover, from the earlier work it has been 
observed that such comparative performance evaluation of 
different wavelet transform algorithms (DWT and 
OCDWT), for deciphering postural related changes in HRV, 
has not been reported in literature. 

II. METHODOLOGY 
The study was performed on the five sets of RR-interval 

time series of 10 minutes duration of healthy subjects, 
obtained from the standard Eurobavar data base available on 
internet (http: // www. cbidongnocchi.it / glossary/ 
eurobavar.html) (subject no. 2 to 5) and ECG data of 
standard lead-II, recorded in our own laboratory, using a 
BIOPAC® MP100 system (subject no. 1).    

A. Theory of Redundant Wavelet Transform 
In critically sampled DWT, most commonly referred to as 

Mallat’s algorithm, the decimation of the wavelet 
coefficients at every decomposition stage is its intrinsic 
property. This decimation step removes every other 
coefficient of the current level. Thus the computation of the 
wavelet transform is faster and more compact in terms of 
storage space. But at the same time it makes the transform 
susceptible to aliasing and shift variant [4]-[6]. Here in 
Mallat’s implementation, the input signal is first convolved 
with the high pass and low pass filters and then further the 
output of these filters are sub-sampled by a factor of two. 
While in redundant wavelet transforms, firstly the filter is 
stretched, to take into account the rescaling and then the 
convolution is performed without any sub-sampling. This 
procedure is named as algorithme à trous [4]. This method 
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makes the transform bulky and is said to be redundant or 
over complete, in the sense that superfluous coefficients are 
retained in the transform and successive coefficient metrics 
are of the same size as the input data. This property of 
redundant wavelet transform makes the transform shift-
invariant and aliased free. In addition to shift-invariance it 
gives an increased amount of information about the 
transformed signal as compared to Mallat’s algorithm. This 
added information can be very useful for the better analysis 
and understanding of the signal properties under estimation. 
The earlier studies prove the superiority of algorithme à  
trous over Mallat’s algorithm in variety of research 
applications like in biomedical signal analysis, for feature 
extraction, in the image denoising applications where the 
discrimination between the noise and the real data is 
improved by using redundant wavelet transform [5], [6]. 

B. Implementation of Mallat’s Algorithm 
For discrete time signals, the Mallat’s algorithm shown in 

Fig. 1 can be implemented to decompose them into eight 
wavelet scales (J=8) with sampling interval T=1/4.8 sec 
using, with DB-6 and DB-3 wavelets. This resulted in the 
following set of bandlimits for the filter bank: 0.01875, 
0.0375, 0.075, 0.15, 0.30, 0.60, 1.2 and 2.4 Hz. The 
decomposed low-frequency (LF) and high-frequency (HF) 
signals were obtained by merging the detail signals at scales 
6 and 7 (0.0375-0.15 Hz: LF band) and at scales 4 and 5 
(0.15-0.60 Hz: HF band), respectively. The very-low 
frequency (VLF) component corresponded to the detail 
signal at scale 8 (<0.0375 Hz: VLF band) [10]. The spectral 
power values for each band are computed by merging 
together the corresponding square wavelet coefficient values 
[9]-[12]. 

C. Over-complete Discrete Wavelet Transform 
The Mallat and à  trous algorithms are both special cases 

of the same filter bank structure. Therefore in principle it is 
possible to combine both these algorithms in the same 
decomposition structure, called an OCDWT, and thus 
gaining the benefits of both of these approaches [3], [6]. 
That is, the computational efficiency and sparse 
representation of Mallat, and shift-invariance along with 
aliased free spectrum of à trous algorithms. The generalized 
representation of OCDWT algorithm is shown in Fig. 2. In 
this section the approach which has been used to construct 
an OCDWT is that, we choose an eight level decomposition 

tree and apply the Mallat’s algorithm to the first three stages 
of 8-level decomposition and then apply à  trous algorithm 
to the remaining five levels. This algorithm can be viewed as 
an initial down sampling of the signal prior to a fully 
sampled DWT decomposition. This study has been made 
using DB-6 and DB-3 wavelets. The values of power in 
VLF, LF and HF bands were computed in the same manner 
as in Mallat’s algorithm. 

III. RESULTS AND DISCUSSION 
It is now a well established fact that not only the 

autonomic nervous system, but the external factors, likes 
body posture and physical activities also influence the 
spectral characteristics of HRV. In terms of vertical 
positioning, HRV is significantly reduced from supine to 
sitting and further decreased from sitting to standing [7]. 
Thus, the heart rate varies during different physical activities 
and postures (sitting, standing, and supine). In this paper, the 
study has been carried out for two different body postures (i) 
Supine, and (ii) Standing using Mallat and OCDWT 
algorithms. To access the performance of these algorithms in 
capturing the dynamics of varying postures, RR-interval 
recordings of five subjects in supine and standing postures 
were included. 

 
To quantify the modulation of the autonomic nervous 

system, four parameters are calculated: (i) VLF power, (ii) 
LF power, (iii) HF power, and (iv) LF/HF ratio. The LF and 
HF powers are used to represent the nerve activity of 
sympathetic and parasympathetic nervous system. But the 
physiological significance of VLF power is not well 
understood. The LF/HF ratio behaves as an index of 
autonomic balance. A low LF/HF ratio represents a 
dominant modulation of parasympathetic nervous system, 
and a high ratio justifies the dominance of sympathetic 
nervous system. The results in the form of LF/HF ratios and 
values of power in VLF, LF, and HF bands, are given in 
Table I and II. The values of power in Table I, obtained 
using OCDWT algorithm for DB-6 wavelet demonstrate that 
the HF power is the largest in the supine position. Further, it 
decreases in the standing position for all the five subjects. 
The percentage reduction of HF power is always higher as 
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Fig. 1.  Two filter bank implementation of Mallat algorithm for 
frequency bands of HRV signals. Where G(Z) and H(Z) are high and 
low pass filters, d’s and a’s are detail and approximation coefficients.  
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Fig. 2. Over complete discrete wavelet transform algorithm consisting 
of single level of Mallat algorithm and two levels of à trous 
algorithm. Where g is representing the high pass filter, h is the low 
pass filter, dj is the detail signal at jth level, and aj is the 
approximation signal at jth level. 
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Fig. 3.  Plots of LF/HF ratios (a) Using over-complete discrete 
wavelet transform for DB-6 wavelet (b) Using Mallat algorithm 
for DB-6 wavelet (c) Using over-complete discrete wavelet 
transform for DB-3 wavelet (d) Using Mallat algorithm for 
DB-3 wavelet.  

compared to that of LF power for all the subjects.  This 
reflects the changes of the parasympathetic modulation. In 
addition, a shift in the autonomic balance is seen in all the 
subjects as shown in Fig. 3(a), i.e., the LF/HF ratio is 
increased from supine to standing postures. This implies that 
there is an increased sympathetic response in the standing 
position. But when the Mallat algorithm for DB-6 wavelet is 

used, a marginally reverse trend is seen in LF/HF ratio for 
supine and standing postures for subject no. 4 and 5 as 
shown in Fig. 3(b). Further, when these two algorithms of 
wavelet transform were implemented using DB-3 wavelet, 
same trend in the results were obtained given in Table II and 
shown in Fig. 3(c) and (d), as obtained for DB-6 wavelet. 
Here also the OCDWT algorithm performs better than 
Mallat algorithm in representing true HRV. In addition, the 
VLF power has been found to be greatest during supine 
posture in all the results. Moreover, this study was also 
performed on the ECG records acquired in our own 
laboratory settings from 20 healthy volunteers, and the same 
trends in the observations were obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The 

TABLE I 
 QUANTIFIED VALUES OF POWER IN SUPINE AND STANDING POSTURES USING 

 DB-6 WAVELET  

 Sub. 
 no. Postures 

 
PVLF 

 

 
PLF 

 

 
PHF 

 

LF/HF 
Ratio 

Supine 652.613 169.131 14.157 11.947 1 
Standing 427.001    107.775 7.149 15.073 
Supine 539.564  148.682 16.980 8.756 2 
Standing 324.540  121.252 9.584 12.652 
Supine 518.753 195.441 26.65 7.332 3 
Standing 310.224  102.195 9.529 10.724 
Supine 531.975    151.010 14.736 10.247 4 
Standing 415.015  135.617 11.075 12.245 
Supine 770.946 279.900 18.983 14.744 O

C
D

W
T 

A
lg

or
ith

m
 

5 
Standing 722.203  206.227 11.812 17.459 
Supine 12.143 9.293 2.612 3.557 1 
Standing 8.272 7.750 1.957 3.960 
Supine 13.942  8.929 3.466 2.576 2 
Standing 6.107     7.173 2.471 2.902 
Supine 9.963 10.019 7.444 1.346 3 
Standing 6.585   6.238 3.498 1.783 
Supine 10.224  8.657 2.859 3.027 4 
Standing 7.460     7.167 3.392 2.113 
Supine 16.265  13.683 3.747 3.652 M

al
la

t A
lg

or
ith

m
 

5 

Standing 14.571   10.948 3.157 3.467 

PVLF: Power of very low components, PLF: Power of low frequency 
components, PHF: Power of high frequency components, LF/HF Ratio: 
Power ratio of low to high frequency components. 

TABLE II 
 QUANTIFIED VALUES OF POWER IN SUPINE AND STANDING POSTURES USING  

DB-3 WAVELET  

 Sub. 
no. Postures 

 
PVLF 

 

 
PLF 

 

 
PHF 

 

LF/HF 
Ratio 

Supine 808.010  207.757 19.001 10.934 1 
Standing 459.479  156.770 10.529 14.888 

Supine 767.864  191.303 20.644 9.266 2 
Standing 474.839  140.484 11.251 12.486 

Supine 621.558  214.433 31.186 6.875 3 
Standing 404.616  128.944 11.635 11.083 

Supine 667.695  175.533 19.376 9.058 4 
Standing 500.693  169.096 14.507 11.655 

Supine 1123.20   267.031 23.262 11.479 

O
C

D
W

T 
A

lg
or

ith
m

 

5 
Standing 846.841 248.300 16.632 14.929 

Supine 23.607  16.932 4.968 3.407 1 
Standing 15.291   14.034 2.888 4.858 

Supine 21.296  16.032 5.291 3.030 2 
Standing 11.213   12.453 2.313 5.372 

Supine 19.396 15.022 10.383 1.446 3 
Standing 11.466   11.511 5.256 2.190 

Supine 18.854 15.906 4.651 3.420 4 
Standing 14.758   11.782 5.183 2.273 

Supine 30.106 23.401 5.205 4.496 

M
al

la
t A

lg
or

ith
m

 

5 

Standing 23.379   18.215 5.619 3.241 

PVLF: Power of very low components, PLF: Power of low frequency 
components, PHF: Power of high frequency components, LF/HF Ratio: 
Power ratio of low to high frequency components. 
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purpose of the study which we performed here is to present 
WT based analysis techniques of HRV and to obtain better 
quantification of autonomic nervous system. It was found 
that an OCDWT algorithm has performed well in 
representing fast autonomic nervous system adaptations in 
changing postures in comparison to Mallat algorithm. 
Although there are still many applications and developments 
which remain to be explored regarding the OCDWT 
algorithm but based upon the results this algorithm may 
prove to be useful for dynamic modeling of cardiovascular 
regulation in supine and standing postures. 

IV. CONCLUSION 
 Although there are several postures and physical activities 
in daily life, but we have used only supine and standing 
postures as activity indicators for HRV. It is because of that 
HRV has specific autonomic implications in these activities. 
In this paper an over complete discrete wavelet transform 
has been proposed for separating the HRV of different 
postures for understanding the role of postural related 
changes in mechanisms of HRV. The OCDWT achieves 
various levels of sparsity of representation, shift-invariance, 
approximately same temporal resolution with an aliased free 
response, by controlling the amount of sub sampling that is 
applied at each decomposition level. The results support the 
hypothesis that a decreased HF power and increased LF/HF 
ratio in supine to standing postures. Further, the efficacy of 
the OCDWT has been demonstrated by performing the 
comparative analysis with Mallat algorithm. The proposed 
algorithm could be the start for future wavelet transforms 
based analysis of HRV aimed at the prediction of various 
episodes of heart rate time series, which has been found to 
be more consistent and convincing with previous time- and 
frequency domain studies. In future more clinical 
investigations are needed for both short-term HRV and long-
term HRV to study the role of postures in heart rate 
modulation. 
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