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Abstract—Osteoporosis is a serious bone disease which leads 
to the increased risk of bone fractures. For prevention and 
therapy, early detection of osteoporosis is critical. In general, for 
diagnosis of osteoporosis, dual-energy X-ray absoptiometry 
(DXA) or densitometry is most commonly used. However DXA 
exhibits some disadvantages such as ionizing radiation, 
relatively expensive cost, and limited information on 
mineralization and geometry of the bone. As an alternative 
method of DXA, quantitative ultrasound (QUS) is being 
investigated. In contrast to DXA, QUS is non-ionizing and 
relatively inexpensive. It can also provide some bone-related 
parameters (e.g., quantitative measurements including speed of 
sound and frequency-dependent attenuation). However the 
estimation of these parameters is difficult and few analytical 
solutions exist due to the complex behavior of ultrasound 
propagation in bone. As an alternative to the analytical methods, 
in most attempts, finite difference time domain (FDTD) method 
is used for simulation of ultrasound propagation in bone with a 
limited capability of modeling complex geometries of the bone. 
Finite element method (FEM) is a better solution since it can 
handle the complex geometry, but has been rarely applied due 
to its computational complexity. In this work, we propose an 
approach of FEM-based simulation of ultrasound propagation 
in bone. To validate our approach, we have tested simulated and 
real bone models from micro-CT using the index of 
speed-of-sound. Our results achieve an average of 97.54% in the 
computational accuracy. 

I. INTRODUCTION 

STEOPOROSIS  is a bone disease caused by the loss in bone 
mass. Osteoporosis itself does not have specific 

symptoms but it leads to enhanced bone fragility, thereby 
increasing the risk of bone fractures. Considering hip 
fractures, at least 90% of which are caused by osteoporosis 
and only 15% of patients can walk without assistance and 
50% of them never return to their normal state [1]. For 
fracture prevention and therapy, early detection of 
osteoporosis is essential. 

Dual-energy X-ray absoptiometry (DXA) is the most 
commonly used device for the diagnosis of osteoporosis and 
it shows relatively good performance to assess bone mass and 
to detect bone fractures. However, DXA can only provide 
limited information on the mineralization and geometry of the 
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bones in its 2-D projection mode. In addition, DXA has 
ionizing radiation and requires relatively high cost [2]. 

As an alternative method to DXA, an interest in 
quantitative ultrasound (QUS) is growing. In comparison to 
DXA, QUS is non-ionizing and relatively inexpensive. 
Furthermore, it can provide a variety of bone information and 
parameters because ultrasound propagation is subject to the 
structural and material properties of the propagation medium. 
Hence QUS offers good potentials to the early diagnosis of 
osteoporosis. 

The main quantitative measurements are usually based on 
two ultrasound parameters such as speed of sound and 
frequency-dependent attenuation. These parameters are used 
under various approaches including ultrasound reflection, 
backscatter, transmission, and guided-wave propagation [3]. 
Nevertheless the relationship between these parameters on 
each approach and bone properties is not exactly understood 
yet and only few analytical solutions are available because the 
ultrasound propagation in bone shows complex behaviors 
depending on the geometrical complexity of the bone. 

As an alternative to the analytical methods, numerical 
methods have been applied for the simulation of ultrasound 
propagation in bone. Especially finite difference time domain 
(FDTD) method is most widely used: for instance, the 
estimation of the bone mineral density at the distal radius [4], 
the simulation in the cortical bone [5], and the assessment of 
the sensitivity of QUS parameters in the cellular model [6]. 
This method is favorable due to its relatively simple 
implementation and good performance in some specific cases, 
but it suffers in modeling the complex structures of the bone 
due to its utilization of grid structure. In general, FDTD 
cannot be generalized for realistic simulation of ultrasound 
propagation in bone [2], [6]. 

In comparison to FDTD, finite element method (FEM) can 
handle complex geometries of the bone efficiently and 
adaptively based on its element flexibility. Also anisotropic 
properties of the bone can be handled well. Lately, the use of 
FEM is increasing as in ultrasound computed tomography [7], 
dental study [8], and brain surgery [9]. However there are rare 
studies of QUS through FE analysis. 

In this paper, we have simulated ultrasound propagation in 
bone using FEM. In order to validate our approach, we have 
tested simple simulated bone models and real bone models 
derived from CT images. The derived index of time-of-flight 
is compared to the analytical solution. Our approach achieves 
an average accuracy of 97.54%. 
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II. METHODS AND MODELS 

A. Mathematics for Ultrasound Propagation 

We model the bone immersed in water. Hence there are 
two types of ultrasound propagation in our approaches. One 
propagates in water and the other propagates in bone. To 
simulate ultrasound propagation in water, the lossless wave 
equation is used, since ultrasonic waves attenuate little in 
water: the attenuation of water is considered as 

0.0022dB·cm-1·MHz-1 and in our model the distance between 

the transmitter and the receiver is short enough to neglect the 
attenuation. 

The lossless ultrasonic wave equation is formulated as  
2
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where c is the ultrasonic speed, P ultrasonic pressure, and t 
time. Ultrasonic speed in the fluid medium can be expressed 
as following:  

k
c


  (2)

where  is the mean fluid density and k the bulk modulus of 

fluid. 
The element matrices by discretization of the lossless wave 

equation are constructed using the Galerkin procedure and 
can be expressed as 
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where [ ]P
eM and [ ]P

eK are the fluid mass matrix and the 

fluid stiffness matrix respectively. The fluid mass matrix and 
the fluid stiffness matrix are given by 
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where N is the shape function, [B] is { }{ }TL N , and {L} is a 

matrix operator defined as gradient or divergence operator 
[10].  

For the simulation of ultrasound propagation in bone, the 
pressure of water is converted as the stress of bone at the 
interface between water and bone. The stress can be derived 
from the displacement of a particle. The relationship between 
the pressure and the displacement can be formulated as 
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where n is the normal vector to the interface and
nu is a 

displacement vector normal to the interface. In the above 
equation, the pressure of water is a load which causes the 
acceleration of the bone. 

By including conversion and damping at the boundary, (3) 
is rewritten as following:  

[ ]{ } [ ]{ } [ ]{ } [ ] { } 0P P P T
e e e e e e e eM P C P K P R u      (7) 

where [ ]P
eC  is the fluid damping matrix and [ ] { }T

e eR u   

fluid-structure coupling mass matrix derived from (6). 
The absorbing boundary is applied to the whole models, 

resulting in no reflection at the boundary: hence ultrasound 
performs infinite propagation over the absorbing boundary. 

B. Propagation in Simulated Bone 

The first bone models are designed with a simple 
configuration in which a donut-shaped bone is immersed in 
water and two lines are set up to represent a transmitter and a 
receiver as shown in Fig. 1.  

 

 
Fig. 1. Simulation configuration for a simple bone model. 

 
The material properties are applied as follows: for water 

ρ=1000kg/m3, c=1500m/s; for bone, ρ=1850kg/m3, Young’s 

modulus 8.6GPa and Poisson’s ratio 4.28 [4]. In this setup, 
ultrasonic wave propagates in water as longitudinal waves 
and when it propagates in bone it shows both longitudinal and 
transverse waves. In bone, the longitudinal ultrasound speed 
is 2901m/s which is calculated by (2) with the Young’s 
modulus and the transverse speed is 1307m/s, which is 
calculated with the shear modulus: shear modulus can be 
expressed as following 
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where G is the shear modulus, E Young’s modulus, and v  
Poisson’s ratio. 

As for the transmitter, 3kHz sinusoidal wave is emitted as 
the incident ultrasonic wave which is assumed as a plane 
wave.  It is applied as a line source along the predefined 
transmitter as shown in Fig 1. In the case of real bone model, 
we apply 1MHz sinusoidal wave. 

We carry out the transient analysis in ANSYS [12] for the 
ultrasound propagation simulation and have used the fluid29 
and plane42 elements for water and bone. We set the time 
interval shorter than 1/20T of ultrasonic wave where T is the 
period of maximum frequency component of the incident 
wave, and set the element size smaller than at least 1/20 of the 
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minimum wavelength [10]. The water wavelength is 
calculated by the following equation.  

c

f
   (9)

where  is the wavelength and f is the frequency.  

C. Propagation in Real Bone 

The second real bone models are constructed using the 
bone images obtained with a micro-CT. The CT image 
reflects a cross-section of a rat femur as shown in Fig 2. 

 

 
Fig. 2. A micro-CT image of the rat femoral bone. 

 
 The images are obtained with a zoom-in micro-CT which 

consists of a micro-focus x-ray source with a variable focal 
spot size of 5–50 um, a rotating subject holder with a rotation 
precision of 0.083°, and a CMOS flat-panel detector with a 
matrix size of 1248ൈ1248 [11]. 

By applying a threshold, we segment out the bone regions, 
including the cortical and sponge bones, from the CT images 
and separate the bone area using some morphology 
operations. The whole model consisting of an arbitrary 
shaped bone which is immersed in water along with the 
transmitter and receiver is shown in Fig. 3. 

 
Fig. 3. Configuration for a real bone model 

 

Fig.4 shows a mesh model of the segmented bone in green 
and bone marrow in red.  

 

 
Fig. 4. A mesh model of the bone derived from a CT image.  

 
The two properties of water and bone are same with the 

case of simple bone models. The material properties of bone 

marrow are defined as ρ=1030kg/m3, and c=1540m/s 

calculated from the Young’s modulus and Poisson’s ratio 
according to (8). Consequently the applied properties for the 
bone marrow are E= 2.4GPa and v=0.45. 

The type of incident ultrasonic wave from a line source is 
modeled as done in the simple type models: it is a sinusoidal 
wave with its center frequency of 1MHz. 

We have performed the transient analysis with the time 
interval of 1/30T and the element size of 1/20 of its water 
wavelength. 

III. RESULTS AND DISCUSSION 

In the case of simple bone model, we have changed the 
thickness of the bone (Case 1: 0.125m, Case 2: 0.225m, and 
Case 3: 0.32m) and simulated ultrasound propagation in each 
model to obtain the travel time. We have validated our FEM 
analysis via comparing the travel time obtained in the FEM 
results with the travel time calculated analytically. 

The travel time in the FEM analysis is defined as the time 
interval between the maximum peaks of incident ultrasound 
and received ultrasonic waves. In each case, we obtain 
received ultrasounds at two positions which are the origin and 
the receiver along the horizontal axis. 

 Analytical travel times are calculated using the known 
information of the distance and the sound speed. All results 
are given in Table I in which the mean error is 2.1%. 

For the real bone model, we have also simulated ultrasound 
propagation. Fig. 5 shows a series of propagating ultrasound 
waves. Fig. 6 shows the first arrival of the ultrasound wave, in 
which the waves along the horizontal axis arrives early due to 
the higher ultrasonic speed in bone than in water.  

For validation, we analytically calculated the travel times 
of ultrasound waves propagating from the transmitter to the 
receiver along the horizontal axis in each case and then 
compare them with the FEM results. Consequently, the mean 
accuracy of FEM achieves 97.54% by considering both the 
simple bone type models and real-bone model. 
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TABLE I 
Comparisons of Ultrasound Propagation Time 

Condition Analytical  Numerical  Error 

Origin Case 1 27.49ms  28.33ms  3.06%

Case 2 25.49ms  25.00ms  1.90%

Case 3 23.58ms  23.33ms  1.04%

Mean (±Standard Deviation) 2.00 (±1.01)%

Receiver Case 1 84.99ms  88.33ms  3.94%

Case 2 80.97ms  80ms  1.20%

Case 3 77.16ms  78.33ms  1.51%

Mean (±Standard Deviation) 2.22 (±1.5)%

 

 
(a) 0.267us (b) 1.333us 

 

(c) 2.667us (d) 5.333us 

 

(e) 6.667us (f) 12.333us 

Fig. 5. A time-series plot of propagating ultrasound waves in water and bone. 

 
Fig. 6. Arriving ultrasound waves in the receiver region. 

IV. CONCLUSION 

In this paper, we have simulated ultrasound propagation in 
water and bone using the simple simulated bones and real 
bones via FEM. In comparison to FDTD, using FEM, we can 
model arbitrary shaped bones from CT images. We have 

validated our results by comparing our solutions against the 
analytical solutions. Our results show about the accuracy 
97.54% in the wave travel time.  

In this work, although the simulation study is carried out in 
2D, it can be extended to 3D, allowing more realistic analysis 
of ultrasound propagation in bone. In addition, through FEM 
one can incorporate anisotropic bone properties and perform 
the analysis.  

In conclusion, our preliminary results suggest the FEM 
approach can be an alternative yet a better tool for QUS with 
realistic representation of the bone geometries and 
anisotropic material properties. 
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