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Abstract— Adaptive beamforming can significantly improve
the image quality in biomedical ultrasound by reducing the
clutter due to interfering signals arriving from undesired
directions. We consider the conventional linearly constrained
minimum variance (LCMV) adaptive beamformer and propose
an alternative based on the well-known generalized sidelobe
canceller (GSC) whose adaptation relies on unconstrained
gradient-driven optimization. The GSC, coupled with iterative
optimization methods, allows for a tradeoff between computa-
tional complexity of beamforming and the image quality. To the
authors’ knowledge, this is the first time a GSC-based gradient-
driven approach has been applied and evaluated in the context
of ultrasound beamforming.

Index Terms— Biomedical signal processing, Array signal
processing, Unconstrained optimization methods

I. INTRODUCTION

In biomedical ultrasound imaging systems, a transducer
array transmits short pulses and detects returning echos
produced by complex tissues and organ boundaries. Received
signals are focused using appropriate time delays and then
summed, as shown in Figure 1 for a transducer array with
M active elements. The weights w1, w2, ..., wM can be based
on some fixed apodization window function, or alternatively,
they can be computed adaptively based on the properties of
received data. Applying the weights, or beamforming, should
minimize the contribution of undesired (interfering) signals,
thus improving the ultrasound image quality (e.g., resolution
and contrast).

The subject of this paper is linearly constrained minimum
variance (LCMV) adaptive beamforming, which is one of
the earliest and simplest adaptive methods [1]. The LCMV
method has recently been applied to biomedical ultrasound,
demonstrating significant improvements in image resolution
and contrast [2]–[7]. It is possible to produce the same
beamforming output using the generalized sidelobe canceller
(GSC) structure [1], as shown in Figure 2 and discussed
in Section III. The GCS structure arises naturally, when
one considers using unconstrained gradient-driven search to
find a solution to a constrained optimization problem such
as LCMV beamforming. The main advantage of the GSC,
coupled with iterative optimization methods, is that its output
quality can be traded off for a lower computational cost
depending on the number of iterations per input snapshot.

As another alternative to the conventional LCMV method
for ultrasound beamforming, we also (briefly) describe and
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evaluate a simple idea of updating the apodization weights
at a reduced rate. In other words, we allow the LCMV
beamformer to take more than one sampling period to
compute and apply the weights. In the case of the 1/4-rate
updating, for example, the beamformer takes as many as four
sampling periods (rather than one period) to find the weights
and compute the corresponding output (the same weights are
applied per four buffered input snapshots). This approach
reduces the computational cost per sampling period at the
expense of apodization optimality. More details are provided
in Section IV.

II. CONVENTIONAL LCMV BEAMFORMER

Given the beamforming structure in Figure 1, at the
sampling instance t, we have the input vector u(t) =
[u1(t) u2(t) ... uM (t)]T . The beamformer output y(t) and
output power P (t) are [1]:

y(t) = w(t)Hu(t), (1)

P (t) = E[|y(t)|2] = w(t)HR(t)w(t), (2)

where w(t) = [w1(t) w2(t) ... wM (t)]T is the weight
vector, and R(t) = E[u(t)u(t)H ] is the spatial covariance
matrix. Superscript H indicates conjugate transposition. In
our case, all vectors and matrices of interest are real-valued,
and H can be replaced with superscript T indicating ordinary
transposition.

Let d denote the steering vector (desired direction) – delay
focusing makes it a vector of M ones, i.e., d = [1 1 ... 1]T .
The linearly constrained minimum variance (LCMV) beam-
former has w(t) such that signals from the desired direction
are passed with a unit gain, while signals from any other
direction are suppressed. Equivalently, w(t) is a solution to
the problem of minimizing the LCMV beamformer’s output
power P (t) subject to the constraint w(t)Hd = 1. Optimal
w(t) is given by [1]:

w(t) =
R(t)−1d

dHR(t)−1d
. (3)

The spatial covariance matrix R(t) is usually estimated
based on the sample correlation matrix R̂(t):

R̂(t) =
1
N

t∑
n=t−N+1

u(n)u(n)H , (4)

where u(n) is the n-th input snapshot, and N is the number
of snapshots. As ultrasound signals are non-stationary, N is
usually very small. Coherence between desired signals and
interfering signals is another important issue in biomedical
ultrasound. The LCMV beamformer performs poorly given
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Fig. 1. Conventional ultrasound beamformer.
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Fig. 2. Generalized sidelobe canceller.

coherent signals, unless we apply certain data preprocessing
schemes to create artificial decorrelation [3]. One of such
schemes is spatial smoothing [8], which will be used here.
Spatial smoothing is based on combining L-element overlap-
ping subarrays of the original M -element array (L ≤ M/2).
Let xk(t) = [uk(t) uk+1(t) ... uk+L−1(t)]T denote the k-th
subarray within u(t). Then, the spatially smoothed sample
correlation matrix R̃(t) is defined as [8]:

R̃(t) =
1

(M − L + 1)N

t∑
n=t−N+1

M−L+1∑
k=1

xk(n)xk(n)H .

(5)
The size of R̃(t) is L × L, whereas the size of R(t) is
M × M . Consequently, using Equation (3) with R̃(t) will
produce a weight vector of size L rather than M . We denote
this vector by w̃(t):

w̃(t) =
R̃(t)−1d

dHR̃(t)−1d
. (6)

Then, the beamformer output can be computed as follows
[3]:

y(t) =
1

M − L + 1

M−L+1∑
k=1

w̃(t)Hxk(t). (7)

Figures 3 and 4, obtained with the FIELD II simulation
tool [9], illustrate the advantage of the LCMV beamformer
(with spatial smoothing) over two non-adaptive beamformers
that use either uniform weighting (delay-and-sum) or an
apodization function (here, Kaiser window configured for
46-dB sidelobe attenuation). Figure 3 shows that the LCMV
beamformer (using a single snapshot: N = 1) gives a
better resolution. Figure 4 shows that the LCMV beamformer
(using two snapshots: N = 2) gives a better contrast against
speckled background; we found that using two snapshots in
this case produces a better-quality image.
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Fig. 3. Performance of delay-and-sum (left), Kaiser window (center), and
LCMV (right) beamformers: 12 single point phantoms placed in 10-mm
intervals, 64 image lines, 4-MHz 96-element phased array transducer (96
active elements, transmit focus at 60 mm, dynamic receive focus at 10 mm
intervals), spatial smoothing with L = 48, using one snapshot (N = 1).
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Fig. 4. Performance of delay-and-sum (top), Kaiser window (center), and
LCMV (bottom) beamformers: point-scatterer-cyst phantom placed at 60
mm (lateral placement: single point at −15 mm, 3-mm scattering region at
−5 mm, 4-mm water-filled cyst at 10 mm), 64 image lines, 3-MHz 192-
element linear array transducer (64 active elements, transmit focus at 60
mm, dynamic receive focus at 10 mm intervals), spatial smoothing with
L = 32, using two snapshots (N = 2).
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III. ULTRASOUND BEAMFORMING WITH GSC

The GSC output is given by [1]:

y(t) = [wq − Bwa(t)]Hu(t), (8)

where B is the blocking matrix, wq and wa(t) are the
non-adaptive (quiescent) and adaptive weight vectors, respec-
tively. One can interpret [wq −Bwa(t)] as the weight vector
w(t) of the LCMV beamformer without spatial smoothing.
Provided that delay focusing is present (i.e., d is a vector
of M ones), wq and B are fixed, while wa(t) varies to
enable adaptive response. To match the LCMV beamformer
behavior, we want to minimize the output power P (t), while
passing the desired signal with a unit gain, and we also want
to incorporate spatial smoothing. The unit gain constraint
is satisfied by setting wq = (1/M)d and by having B
such that BHd = 0 [1].1 The output power is minimized
by updating wa based on the gradient g = ∇P and the
Hessian H = ∇2P (both with respect to wa). Without spatial
smoothing, we would have

g(t) = −2BHR̂(t)[wq − Bwa(t)], (9)

H(t) = 2BHR̂(t)B. (10)

With spatial smoothing, however, we want to use R̃(t) whose
size (L×L) is smaller than that of R̂(t). Consequently, the
sizes of wa, wq, and BH must be adjusted accordingly.
Using symbol ˜ to indicate a size reduction due to the
presence of spatial smoothing, we now re-define g and H as
follows:

g(t) = −2B̃HR̃(t)[w̃q − B̃w̃a(t)], (11)

H(t) = 2B̃HR̃(t)B̃. (12)

Next, we consider four options for updating w̃a(t), based
on the following four gradient-driven optimization methods
[10]. (We take advantage of the fact that the optimization
problem at hand is convex quadratic: our objective function
P is quadratic, and its Hessian H is positive definite; hence,
no line search is required.)

Newton Method: (13)

w̃a[i+1](t) = w̃a[i](t) − H(t)−1g[i](t),

Quasi-Newton (QN) Method: (14)

w̃a[i+1](t) = w̃a[i](t)−
g[i](t)

T (S[i](t)g[i](t))

(S[i](t)g[i](t))T H(t)(S[i](t)g[i](t))
(S[i](t)g[i](t)),

Steepest Descent (SD) Method: (15)

w̃a[i+1](t) = w̃a[i](t) − g[i](t)
T g[i](t)

g[i](t)T H(t)g[i](t)
g[i](t),

Conjugate Gradient (CG) Method: (16)

w̃a[i+1](t) = w̃a[i](t) + g[i](t)
T g[i](t)

s[i](t)T H(t)s[i](t)
s[i](t),

1For example, given M = 4 we have B =

» 1
−1
0
0

0
1

−1
0

0
0
1

−1

–
.

where i is the iteration number, S[i](t) is a special matrix that
progressively converges to H(t)−1 as i increases, and s[i](t)
is a conjugate search direction. We compute S[i](t) using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula, and
we update s[i](t) as follows [10]: s[i+1](t) = −g[i+1](t) +
g[i+1](t)

T g[i+1](t)

g[i](t)T g[i](t)
s[i](t).

Note that we permit multiple iterations per snapshot (i.e.,
per fixed t).2 For the current snapshot at time t, we initialize
w̃a to the the vector produced by the last iteration for the
previous snapshot: w̃a[0](t) = w̃a(t− 1). In the special case
of a single iteration per snapshot, we obtain the usual form
of an adaptive weight update [11]: w̃a(t) = w̃a(t− 1)− ....

Given B̃, w̃q, and final w̃a(t), we can compute the output
of the GSC combined with spatial smoothing as follows:

y(t) =
1

M − L + 1

M−L+1∑
k=1

[w̃q − B̃w̃a(t)]Hxk(t). (17)

One can interpret [w̃q − B̃w̃a(t)] as the weight vector w̃(t)
of the LCMV beamformer with spatial smoothing.

Table I shows computational costs of the conventional
LCMV method and the four described GSC-based gradient-
driven methods. (In Table I, symbol I denotes the number
of iterations per snapshot.) Table II shows numerical values
of computational savings for our test examples: see Figures
3-6, where M = 96 and L = 48 for the single point
phantoms, and M = 64 and L = 32 for the point-scatterer-
cyst phantom. (For the latter, we use N = 2, which involves
L(L + 1)/2 extra additions.) These savings are with respect
to the baseline cost of the conventional LCMV beamformer.
Each entry in Table II is a pair of numbers [MIN, MAX].
The first number, MIN, is computed assuming the same
(unit) cost for each addition, multiplication, and square root
operation. The second number, MAX, is computed assuming
that each multiplication is 10 times more expensive than
an addition, and each square root operation is 32 times
more expensive than an addition. Thus, each reported savings
range [MIN, MAX] captures, to some extent, a variety of
possible implementations of adders, multipliers, and square-
root circuits. Under such assumptions, the baseline cost of
the conventional LCMV beamformer ranges from 54393
to 296226 for the single point phantoms, and from 19297
to 102954 for the point-scatterer-cyst phantom. Note that
greater M and L yield greater savings. Next, we take a
closer look at the Newton, quasi-Newton, steepest descent,
and conjugate gradient methods individually.

A. Newton Method

Replacing g[i](t) by [2B̃HR̃(t)w̃q + H(t)w̃a[i](t)] in
Equation (13) yields:

w̃a(t) = 2H(t)−1B̃HR̃(t)w̃q, (18)

2As ultrasound signals are non-stationary, eR(t) is usually computed using
a very few snapshots, and it may change rapidly with time. Consequently,
H(t) may change rapidly with t as well, per Equation (12). The rationale for
permitting multiple iterations per snapshot (i.e., per fixed t) is to facilitate
searching with fixed H(t).
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TABLE I

COMPUTATIONAL COST OF BEAMFORMING METHODS UNDER CONSIDERATION.

Method Additions (N = 1) Multiplications Square Root

LCMV L3/6 + 2ML − L/6 L3/6 + 3L2/2 + ML + 13L/3 + 1 L
Newton L3/6 + 5L2/2 + 2ML − 14L/3 + 2 L3/6 + 2L2 + ML − L/6 + 1 L − 1

QN 2ML + L2 − 3L + I(7L2 − 9L − 1) ML + L + 1 + I(8L2 − 10L + 5) 0
SD 2ML + L2 − 3L + I(2L2 − 4) ML + L + 1 + I(2L2 − 1) 0
CG 2ML + L2 − 3L + I(2L2 + 2L − 6) ML + L + 1 + I(2L2 + 2L − 2) 0

that is the Newton method finds optimal w̃a(t) after a single
iteration. The conventional LCMV method also finds the
optimal weight vector at once, according to Equation (6).
Both methods must compute a product in the form A−1b,
where A and b represent either R̃(t) and d (for conventional
LCMV), or H(t) and 2B̃HR̃(t)w̃q (for Newton). This
product can be computed by solving (CCH)(A−1b) = b,
where C is the result of the Cholesky decomposition of A
[12]. Following the standard practice, we first solve Ca = b
for a, then solve CH(A−1b) = a for (A−1b).

The GSC beamformer based on the Newton method and
the conventional LCMV beamformer produce the same-
quality output. According to Table II, however, the Newton
method does not have a practical advantages over the con-
ventional LCMV beamformer.

B. Quasi-Newton (QN) Method

Table II shows that, given M = 96 and L = 48 (the
single point phantoms), the QN method with one iteration
per snapshot saves approximately 10% of computations.
We cannot afford more than one iteration per snapshot, as
it would make the QN method more expensive than the
conventional LCMV method. The 1-iteration QN method
produces poor w̃a(t), as illustrated by the image quality
in Figure 5. The situation is worsened by the fact that
H(t) is time-dependent, which may affect the continuing
convergence from the previously computed S(t − 1) to the
current H−1(t). The 1-iteration QN method may offer some
practical value when M = 128 and L = 64 (over 25%
savings), but its use still remains weakly motivated due to the
poor quality of images. Note that for the point-scatterer-cyst
phantom (M = 64 and L = 32), the conventional LCMV
method (producing optimal weights) is less expensive.

C. Steepest Descent (SD) Method

The SD method can afford as many as four iterations per
snapshot for the single point phantoms, and three iterations
per snapshot for the point-scatterer-cyst phantom, without
exceeding the computational cost of the conventional LCMV
beamformer. The savings range approximately from 0% to
60%, but we also face a degradation in the image quality,
especially in the case of the single point phantoms (see
Figure 5). From the practical point of view, the CG method
is preferable over the SD method, as the former exhibits
faster convergence and has a similar computational cost in
comparison to the latter (see Table II).

Remark: The steepest descent method with one iteration
per snapshot is closely related to the classical least-mean-

TABLE II

NUMERICAL VALUES OF COMPUTATIONAL COSTS IN OUR TEST

EXAMPLES (SEE FIGURES 3-6).

Beamforming Savings (%): Savings (%):
Method M = 96, L = 48 M = 64, L = 32

Newton [-11.9, -5.0] [-14.4, -5.9]
1-iteration QN [8.7, 14.5] [-16.0, -8.8]
1-iteration SD [53.6, 63.3] [39.2, 52.5]
2-iteration SD [36.7, 46.2] [18.0, 30.7]
3-iteration SD [19.7, 29.1] [-3.2, 8.8]
4-iteration SD [2.8, 12.0] [-24.4, -13.1]
5-iteration SD [-14.1, -5.1] [-45.6, -34.9]
1-iteration CG [53.2, 63.0] [38.6, 51.9]
2-iteration CG [36.0, 45.5] [16.7, 29.3]
3-iteration CG [18.7, 28.1] [-5.1, 6.8]
4-iteration CG [1.4, 10.6] [-26.9, -15.8]
5-iteration CG [-15.9, -6.9] [-48.8, -38.3]

squares (LMS) algorithm. Combining spatial smoothing with
the GSC based on the LMS algorithm was studied in [13].
Without spatial smoothing, the LMS algorithm would update
wa as follows [11]:

wa(t+1) = wa(t)+μBHu(t)u(t)H [wq −Bwa(t)], (19)

where μ is the constant step-size parameter. With spatial
smoothing, one can use the following update method from
[13]:

w̃a(t + 1) = w̃a(t) + μB̃HR̃(t)[w̃q − B̃w̃a(t)](20)

= w̃a(t) − μg(t)/2.

The main difference between Equations (20) and (15) is the
step-size parameter: in our case, μ(t) = g(t)T g(t)

g(t)T H(t)g(t)
, i.e.,

it is exactly prescribed, optimal (fastest convergence), and
time-dependent.

D. Conjugate Gradient (CG) Method

For the current snapshot at time t, we initialize s as follows
[10]: s[0](t) = −g[0](t) = 2B̃HR̃(t)w̃q −H(t)w̃a[0](t). The
first iteration of the CG method produces the same results as
the first iteration of the SD method, as Equations (15) and
(16) become identical for i = 0. The subsequent iterations
of the CG method are producing better results than those of
the SD method, as illustrated by Figures 5 and 6. According
to Table II, the computational savings of both methods are
comparable to each other, which makes the CG method
a preferred choice. Section V provides further details and
recommendations based on the evaluation results for our test
examples.
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TABLE III

NUMERICAL VALUES OF COMPUTATIONAL COSTS IN OUR TEST

EXAMPLES (SEE FIGURES 8 AND 10).

Update Savings (%): Savings (%):
Rate M = 96, L = 48 M = 64, L = 32

4 [71.7, 74.3] [66.8, 69.9]
8 [83.6, 86.7] [80.6, 84.3]
16 [89.6, 92.9] [87.5, 91.5]

IV. LCMV BEAMFORMING WITH REDUCED-RATE

WEIGHT UPDATE

In the previous section we have shown that iterative
gradient-driven beamforming, based on the GSC structure,
can offer lower computational complexity than that of the
conventional LCMV method, but at the expense of the re-
duced output quality (i.e., the weights are no longer optimal).
A similar tradeoff between the computational cost and the
output quality can be achieved with a different approach: we
are to use the conventional LCMV beamformer, but to reduce
the rate at which its weights are computed and applied.

For each sampled input u(t), the conventional LCMV
beamformer finds and applies optimal weights w̃(t) to com-
pute output y(t), according to Equations (6) and (7). Let
COSTw and COSTy denote the respective cost of computing
the weights and the output for given u(t). The total cost per
sampling period is (COSTw + COSTy) for the conventional
LCMV beamformer. If we update the weights once every Nw

sampling periods (rather than every period), then the cost per
sampling period becomes (COSTw/Nw + COSTy). Since the
total cost is dominated by the cost of computing the weights,
the potential savings can be substantial.

Effectively, we want to let the LCMV beamformer take
as many as (Nw − 1) extra sampling periods to compute
the optimal weights. For a given sampling instance t, the
weights are computed based on R̃(t), but they will not
be ready for the next (Nw − 1) sampling periods. While
waiting for the new weight vector, the beamformer buffers
new inputs u(t),u(t+1), ...,u(t+Nw−1) and produces the
outputs by applying the previous weight vector, computed
based on R̃(t − Nw), to the previously buffered inputs
u(t−Nw),u(t−Nw+1), ...,u(t−1). Figures 8 and 10 show
that the image quality remains more or less acceptable, when
we let Nw = 4, 8, 16. Table III shows the corresponding
computational savings that range approximately from 70%
to 90%.

V. EVALUATION RESULTS

Figures 5 and 6, obtained with the FIELD II simulation
tool [9], illustrate the performance of the GSC beamformer
based on the QN, SD, and CG methods. The Newton method
produces the same output as that of the conventional LCMV
method, shown in Figures 3 and 4.

A more detailed picture in the case of single point phan-
toms is conveyed by Figure 7 that shows the point spread
function at the transmit focus. As expected, the conventional
LCMV and Newton methods produce identical FWHM (full

TABLE IV

FWHM, SIDELOBE ENERGY ESL , AND MAINLOBE ENERGY EML AT

TRANSMIT FOCUS (SINGLE POINT PHANTOMS).

Beamforming FWHM ESL EML ESL/EML

Method (mm) (dB) (dB) (dB)

Delay-and-Sum 0.885 -23.777 2.964 -26.741
Kaiser Window 1.186 -24.770 4.134 -28.903
LCMV/Newton 0.351 -36.919 -1.291 -35.628
1-iteration QN 0.358 -20.962 -1.184 -19.779

1-iteration SD/CG 0.360 -24.259 -1.172 -23.088
3-iteration SD 0.354 -26.410 -1.248 -25.161
5-iteration SD 0.352 -27.138 -1.282 -25.857
3-iteration CG 0.351 -31.910 -1.290 -30.620
5-iteration CG 0.351 -34.030 -1.290 -32.740

width at half maximum), mainlobe energy EML, and side-
lobe energy ESL (assuming a 25-dB attenuation threshold):
they are the best among all the methods considered here.
The performance of the 1-iteration QN method is worse
than that of the 3-iteration SD method, and the latter is
outperformed by the 3-iteration CG method. Table IV shows
the corresponding numerical values of interest. The practical
utility of the 1-iteration SD/CG method is limited due to the
poor image quality. On the other hand, using 5 iterations for
the SD or CG methods exceeds the computational cost of
the conventional LCMV beamformer. To strike a reasonable
tradeoff, the 3-iteration CG method is recommended, offering
approximately 20% in computational savings (see Table II).

Table V shows the contrast values in the case of the point-
scatterer-cyst phantom. The object’s contrast against back-
ground is defined as the ratio (Sbackground−Sobject)/Sbackground,
where S denotes the average log-compressed signal enve-
lope inside the region of interest. The conventional LCMV
and Newton methods produce the best contrast values, as
expected. The 1-iteration QN method is not used, as it is
more expensive yet suboptimal in comparison to the conven-
tional LCMV beamformer. The 1-iteration SD/CG methods
perform relatively well, while using 3 iterations does not
produce a considerably better image to justify a considerable
reduction in computational savings. Hence, the 1-iteration
SD method is recommended, offering approximately 40% in
computational savings (see Table II).

Figures 8 and 10 show the simulation results for the single
point phantoms and the point-scatterer-cyst phantom, given
Nw = 4, 8, 16; the point spread function at the transmit focus
in the case of single point phantoms is shown Figure 9.
Tables VI and VII show the numerical values of interest. The
update rate of 1/8 (Nw = 8) appears to be a good choice,
striking a favorable tradeoff between the image quality and
the computational savings (over 80%) in comparison to the
cases with Nw = 4 and Nw = 16 (see Table III).

VI. CONCLUSION

We have described the application of the GSC structure
to adaptive ultrasound beamforming as an alternative to the
conventional LCMV method. We have considered adjust-
ing the GSC’s adaptive weight vector using four gradient-
driven methods: Newton, quasi-Newton, steepest descent,
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Fig. 5. From left to right: Performance of 1-iteration QN, 1-iteration SD/CG, 3-iteration SD, 5-iteration SD, 3-iteration CG, and 5-iteration CG methods:
single point phantoms (cf. Figure 3).

TABLE V

CONTRAST WITH RESPECT TO SPECKLED BACKGROUND

(POINT-SCATTERER-CYST PHANTOM).

Beamforming Scattering Water-Filled
Method Region Cyst

Delay-and-Sum 1.290 0.931
Kaiser Window 1.210 0.888
LCMV/Newton 2.214 0.943

1-iteration SD/CG 1.494 0.931
3-iteration SD 1.696 0.936
3-iteration CG 1.820 0.931

TABLE VI

LCMV WITH REDUCED-RATE UPDATE: FWHM, ESL , EML AT

TRANSMIT FOCUS (SINGLE POINT PHANTOMS).

Update FWHM ESL EML ESL/EML

Rate (mm) (dB) (dB) (dB)

1 0.351 -36.919 -1.291 -35.628
1/4 0.360 -26.958 -1.109 -25.894
1/8 0.361 -24.053 -1.120 -22.933

1/16 0.471 -24.560 -1.009 -25.604

TABLE VII

LCMV WITH REDUCED-RATE UPDATE: CONTRAST

(POINT-SCATTERER-CYST PHANTOM).

Update Scattering Water-Filled
Rate Region Cyst

1 2.214 0.943
1/4 2.711 0.968
1/8 1.756 0.918
1/16 1.592 0.886
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Fig. 6. From top to bottom: Performance of 1-iteration SD/CG (top), 3-
iteration SD (center), and 3-iteration CG (bottom) methods: point-scatterer-
cyst phantom (cf. Figure 4).

and conjugate gradient. Based on our evaluation results for
the single point phantoms, we recommend using the 3-
iteration conjugate gradient method, whose computational is
approximately 20% less than that of the conventional LCMV
beamformer. For the case of the point-scatterer-cyst phantom,
we recommend the 1-iteration steepest descent method of-
fering approximately 40% in computational savings. These
savings, however, lead to (tolerable) degradation of the image
quality. As an alternative approach to lower computational
costs, we have also proposed to use the LCMV beamformer
whose weights are updated at a reduced rate. A detailed
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Fig. 7. Point spread function at transmit focus (single point phantoms).
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Fig. 8. Performance of LCMV beamformer with 1/4-rate (left), 1/8-rate
(center), and 1/16-rate (right) weight updating: single point phantoms (cf.
Figure 3).

qualitative and quantitative study of this method is the subject
of our future work.
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