
  

  

Abstract— This paper presents a novel method for tissue 

characterization using wavelet transform of ultrasound radio 

frequency (RF) echo signals.  We propose the use of multiscale 

products of wavelet transform sequences of RF echoes to 

estimate the scatterer distribution in the tissue. The proposed 

method is based on the fact that when emitted ultrasound beams 

interact with scatterers in the tissue, backscattered beams 

contain singularities corresponding to the location of the 

scatterers. The singularities will exist in multiple scales of 

wavelet sequences of the echo signals. Therefore, peaks of 

wavelet transform multiscale products correspond to the 

location of scatterers. Estimation of scatterer spacing can be 

used for tissue characterization. The efficacy of the proposed 

method was validated in RF echo signals of in-vitro human 

prostate to characterize normal and cancerous tissue. The 

results confirm that wavelet transform multiscale products of 

RF echo signals contain tissue typing information that can be 

used as an effective tool to differentiate normal and cancerous 

prostate tissue. 

I. INTRODUCTION 

 

LTRASOUND imaging is the modality of choice for a wide 

variety of medical diagnostic procedures. Safety, cost 

effectiveness, portability, and real-time nature of ultrasound 

imaging are among advantages of this modality; however, 

poor visibility of many abnormalities in ultrasound images is 

a drawback for this imaging modality. 

For example, prostate biopsy is a diagnostic procedure in 

which transrectal ultrasound (TRUS) imaging is used for 

identifying the outline of the prostate and guiding the biopsy 

needle to predefined anatomical regions of the prostate. 

Conventional biopsy under TRUS guidance has poor 

sensitivity, with positive predictive values between 40 and 

60% [1].  More accurate biopsy targeting and cancer 

diagnosis could be achieved if samples were taken not only 
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from predefined locations of the prostate, but also from 

specific locations where the image can predict cancer with 

reasonably high probability; However, B-mode ultrasound 

images do not have image-specific targeting capability. 

Numerous techniques have been proposed for computer-

aided detection of prostate cancer using ultrasound images to 

facilitate image-specific targeting [2]. Many techniques are 

based on texture features of ultrasound B-scan images [3]-

[5]; However, as shown in [6]-[8], some of the tissue 

characterizing parameters can only be extracted from RF 

echo signals before they are processed for B-mode image 

generation. 

RF echo signals have been successfully used to 

characterize tissue types with applications in cancer 

diagnosis. Tissue characterizing parameters extracted from 

RF signals include those describing the attenuation and 

scattering of ultrasound in the tissue. Feleppa et al. [7] have 

used the normalized power spectra of RF echo signals for 

prostate tissue typing. They derive the intercept, slope and 

mid-band values of the linear regression of the frequency 

spectrum of RF signals for tissue typing. 

Estimation of scatterer spacing is another technique 

proposed for tissue characterization using RF echo signals. 

Scatterer spacing has previously been performed using two 

different approaches in the literature: Spectral analysis and 

wavelet analysis. Spectral analysis methods include 

techniques based on estimation of the autocorrelation 

function [9], cepstrum [10], spectral autocorrelation [11, 12], 

generalized spectrum [13], complex cepstrum [14] and 

singular spectrum analysis (SSA) [15]. Spectral techniques 

work on the assumption that the analyzed signal is stationary; 

this is not the case for most RF echo signals [16]. Wavelet 

transform based techniques include the use of modulus 

maxima [17] and continuous wavelet transform [18] for 

tissue characterization.  

In this study, detection of peaks of wavelet transform 

multiscale products (WTMSP) of ultrasound RF echoes is 

proposed as a novel wavelet-based method for estimation of 

scatterer spacing. Accuracy of the proposed method is 

investigated in simulated RF echoes. Furthermore, the 

efficacy of WTMSP peak detection in quantitative analysis 

of echo patterns as a feature for tissue typing in in-vitro 

human prostate is studied. The results of tissue classification 

using proposed method are compared to those of the method 

suggested in [7] which has been a pioneering work in the 

prostate tissue typing based on RF echo signals. 
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II. METHODS  

 

A. Ultrasound RF echo signal modeling 

The RF echo signals are formed by three-dimensional 

convolution of tissue structures and ultrasound pressure 

waves. Analysis of RF echo signals in three-dimensional 

space is a challenging task. In this study, the point scatterer 

model is used which is a simplified model based on the 

assumptions of narrow ultrasound beam, weak scattering and 

linear propagation [19]. In this model, RF echo signal ( )ty  

is modeled by: 

( ) ( ) ( ) ( )tωts*thty += , (1) 

where ( )th  and ( )ts  are the transmitted ultrasound pulse 

wave and the scatterer distribution, respectively and ( )tω is 

additive white noise. Scatterer distribution ( )ts  can be 

decomposed into two components: 
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where RN  and DN  are, respectively, the number of 

resolvable and diffused scatterers,  ( ).rn and ( ).dn are 

scatters generated by n-th resolvable and diffused scatterers, 

and nφ and nθ are time delays corresponding to the distance 

of scatterers to the transducer.  If we define 
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then ( )ty is given by 

( ) ( ) ( ) ( )tωtDtRty ++= , (5) 

where ( )tR  and ( )tD  are the terms corresponding to 

resolvable and diffused scatterers, respectively. 

 

B. Multiscale product of wavelet transform 

Wavelet transform decomposes a signal into band limited 

components, which can be reassembled to reconstruct the 

original signal without error [20]. Wavelet transform is 

linear; therefore, wavelet transform of RF echo signal at 

scale j2 , [ ].W j  is denoted as: 

( )[ ] ( )[ ] ( )[ ] ( )[ ]tωWtDWtRWtyW jjjj ++= , (6) 

As shown in [17], resolvable scatterers will lead to 

singularities in the echo signal at the times corresponding to 

their locations in space. These singularities in the echo 

signals will lead to local maxima in ( )[ ]tRW j  at all scales. 

On the other hand, diffused scatterers will lead to local 

maxima in the wavelet transform at middle scales. These 

local maxima will disappear at lower scales as well as at very 

high scales.  White noise will lead to local maxima at lower 

scales only. Therefore, local maxima of wavelet transform at 

high scales are generated by resolvable scatterers [17]. Based 

on these facts, it has been suggested that multiplying the 

wavelet transform coefficients at adjacent high scales will 

amplify the maxima corresponding to singularities generated 

by resolvable scatterers, whereas it reduces the maxima 

corresponding to diffused scatterers and noise [21], [22]. 

In this study, wavelet transform sequences of RF echo 

signals are decomposed to five levels (scale 1625
= ). The 

products of wavelet sequences at scales 1624
= and 3225

=  

are calculated and their local maxima are located and 

average distance between the local maxima is estimated as 

mean scatterer spacing.  

  

C. Simulation Data 

In order to validate the distances between resolvable 

scatterers estimated by the proposed method, RF echo 

signals were firstly simulated using Field II ultrasound 

simulation program [23] with a number of resolvable 

scattering particles with equal distance. Estimated scatterer 

spacing was then compared to the particle distance set in the 

simulation. All physical dimensions of the simulation probe 

were set to those of real transrectal probe used in in-vitro 

prostate imaging. Center frequency of the simulation probe 

was set to 6.6 MHz. 

  

D. Experimental Data 

The experimental data was collected from extracted 

prostate specimens of 35 patients who chose prostatectomy 

as their treatment option [24]. Extracted prostates were 

scanned along parallel planes that were 4 mm apart while the 

prostates were suspended in a water bath. RF echo signals 

were recorded using a Sonix RP (Ultrasonix Inc., Richmond, 

BC, Canada) ultrasound machine equipped with a transrectal 

probe (BPSL9-5/55/10).  

The prostate specimens were then dissected along the 

scanned cross-sections at 4 mm intervals. Histopathological 

malignancy maps of whole mount slides were acquired and 

used as the gold standard. In order to evaluate the results of 

ultrasound-based techniques for prostate cancer detection, 
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the results were compared with the maps acquired by the 

histopathological analysis of the same cross section of tissue. 

The process of registering the histopathology maps to the RF 

frames was performed manually using visual landmarks.  

Due to the elevation beam width of ultrasound signals and 

also inevitable errors caused by the low precision cutting 

process in the pathology lab, the accurate match between 

tumor boundaries in ultrasound and histopathology images 

was challenging. Therefore, only a limited number of ROIs 

from cross-sections for which a high level of confidence of 

registration could be achieved were selected. In each cross-

section, several regions of interest (ROIs) with size of 96 × 8 

pixels (3.7 × 1.87 mm) were chosen. ROIs were selected 

from 46 cross-sections. 1478 normal and 856 cancerous 

ROIs were selected for this study.  

WTMSP of echo signals in each ROI were computed. 

Distances between local maxima of WTMSP were then 

averaged and used as a representative feature of ROI for 

quantitative analysis of the RF echo signals. 

 

III. RESULTS AND DISCUSSION 

 

A. Simulation Results 

RF echo signals were simulated using Field II simulation 

program. As ultrasound center frequency was set to 6.6 

MHZ, wavelength of the ultrasound beam was 233 

micrometers. Distances between resolvable scattering 

particles were estimated when scatterer spacing in simulation 

were set to equal distances of 250-400 micrometers. Figure 1 

shows an example of simulated RF echo signal 

(contaminated with Gaussian additive noise at SNR=10 dB) 

when the distance between particles was set to 270 microns. 

Estimated average distance between detected locations of 

scatterers is 263 microns which is very close to the scattering 

particles (less than 3% error). Estimation error for particles 

with distances in the range of 250-400 micrometers was less 

than 4%. Therefore, the proposed algorithm is able to 

successfully estimate distances between resolvable scatterers 

in the presence of additive noise. 

 

B. Experimental Results 

Distances between local maxima of WTMSP of RF echo 

signals collected from normal and cancerous prostate tissue 

were estimated. We tested the samples of the local maxima 

distances from normal and cancerous prostate tissues using 

ANalysis Of VAriance (ANOVA) test with the null 

hypothesis of the equality of means in samples from two 

different populations. This test resulted in p-value of almost 

zero which rejects the null hypothesis. This can be 

interpreted as significant difference between distances 

between local maxima of WTMSP in normal and cancerous 

prostate. 

Figure 2 displays the distribution of the distance in normal 

and cancerous samples around their medians using a box and 

whisker plot. The line in the middle of each box is the 

sample median, the tops and bottoms of each box are the 

25th and 75th percentiles of the samples, respectively, and 

the distances between the tops and bottoms are the inter-

quartile ranges. The whiskers (lines extending above and 

below each box) are drawn from the ends of the inter-

quartile ranges to the furthest observations within the 

whisker length. Observations beyond the whisker length are 

marked as outliers (displayed with + sign). It can be seen that 

only the top 25 percent of cancerous tissue and bottom 25 

percent of normal tissue overlap. Therefore, this figure is 

evidence confirming significant difference between distances 

between local maxima of WTMSP in normal and cancerous 

prostate tissue.  

A support vector machine (SVM) classifier was used to 

classify the ROIs using WTMSP features. Classification 

accuracy, sensitivity and specificity of this classifier along 

with those of SVM classifier using spectral features 

introduced in [7] are shown in Table I. As it can be seen the 

accuracy of the classifier using WTMSP is almost the same 

as that of spectral feature-based classifier. However, 

Figure 2: Average scatterer spacing in normal and cancerous 

prostate tissue. 

Figure 1: An example of simulated RF echo signals where scatterer 

spacing is 270 micrometers.  
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WTSMP based classifier has a better sensitivity. As false 

negative diagnosis is a major problem in the conventional 

biopsy procedure, increasing sensitivity is a very important 

advantage for the classifier based on WTMSP. 

IV. CONCLUSION 

This study proposes a novel wavelet-based method for 

estimation of scatterer spacing. The method is based on   

detection of peaks of wavelet transform multiscale products 

of ultrasound RF echoes. In order to validate the mean 

scatterer spacing estimated by the proposed method, echo 

signals were simulated using Field II simulation program 

when scatterer spacing in simulation were set to equal 

distances of 250-400 micrometers. The proposed algorithm 

was able to estimate distances between resolvable scatterers 

with less than 4% error. The accuracy of the proposed 

algorithm can be further studied with a real probe in a tissue 

mimicking phantom with known scatterer distribution. This 

is the subject of our future work. 

Also, through in-vitro human prostate data, it was shown 

that estimation of average distance of WTMSP local maxima 

may function as a feature for tissue typing. ANOVA test 

confirmed that the local maxima distances from normal and 

cancerous prostate tissues are significantly different. An 

SVM classified the normal and cancerous ROIs using 

WTMSP features with sensitivity better than an SVM 

classifier that used spectral features proposed in [7].  
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TABLE I 

COMPARISON OF CLASSIFICATION PERFORMANCE OF THE PROPOSED 

TISSUE TYPING APPROACH WITH THE FELEPPA SPECTRAL FEATURES 

 WTMSP Spectral Features a 

Accuracy 73% 72.3% 

Sensitivity 76.4% 52.8% 

Specificity 70% 82.1% 
 

a As calculated and reported in [25]. 
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