
  

  

Abstract - The objective of this research is to explore whether a 
two-dimensional BCI can be achieved by reliably decoding 
single-trial magneto-encephalography (MEG) signal associated 
with sustaining or ceasing right and left hand movements. 
Seven naïve subjects participated in the study. Signals were 
recorded from 275-channel MEG and synthetic aperture 
magnetometry (SAM) was employed. The multi-class 
classification for four-directional control was evaluated offline 
from 10-fold cross-validation using direct-decision tree 
classifier and genetic algorithm based Mahalanobis linear 
distance. Beta band (15-30Hz) event-related desynchronization 
and event related synchronization were observed in right and 
left hand movement related motor areas for physical 
movements as well as motor imagery. The cross-validation 
accuracy for the proposed four-direction classification from 
SAM- filtered MEG signal was as high as 95-97% for physical 
movements and 86-87% for motor imagery. The high 
classification accuracy suggests that a reliable high 
performance two-dimensional BCI can be achieved from single 
trial detection of human natural movement intentions from 
SAM-filtered MEG signals, where user may not need extensive 
training.  

 

I. INTRODUCTION 
ATIENTS with degenerative diseases such as 
amyotrophic lateral sclerosis (ALS), cerebral palsy, 
muscular dystrophy and multiple sclerosis or from 

trauma such as brainstem stroke, brain or spinal cord injury 
suffer various movement disorders. Without voluntary 
muscle control, the patients become helpless and fail to 
communicate their needs to the environment. In the later 
stages of such diseases, though their cognitive ability is 
intact they are completely trapped in their own body or 
“locked-in”. Brain-Computer interfaces (BCIs) can be an 
effective solution for patients with such diseases. BCIs are  
devices that allow for communicating intentions by 
analyzing mere brain activity, not involving the muscle 
movements [1]. The development of BCI technology is of 
immense importance to patients in the ‘locked-in’ or semi- 
‘locked-in’ stage, where BCI can be used as a 
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communication and rehabilitation tool. The direct brain 
communication or control may offer patients the only 
possible way to interact with external world. 
    BCIs can be used for decoding brain signals and control 
applications based on these signals, invasively or non-
invasively. A highly reliable and fast BCI for multi-
dimensional control can be achieved using the invasive BCI 
applications; but they have inherent technical difficulties 
such as the need for chronic recordings and risks due to 
surgical implantation of electrode. Due to such difficulties 
non-invasive methods are generally used. Electro-
encephalogram (EEG) and Magneto-encephalogram (MEG) 
have emerged as viable options in non-invasive techniques; 
both of them have time resolutions in milliseconds so we can 
study the dynamic activities of brain in contrast to imaging-
based BCI [2]. EEG measures the electrical activity in the 
brain whereas MEG is an imaging technique used to 
measure the magnetic fields produced by the electrical 
activity in the brain. MEG is bulky and susceptible to urban 
and other magnetic noises. However, it provides direct 
information about the dynamics of evoked and spontaneous 
neural activity via the extremely sensitive super conducting 
quantum interference devices (SQUIDs). EEG has the 
advantage that it is portable and cost effective but magnetic 
fields suffer far less than the electric fields from the spatial 
blurring effect of the skull.  Thus, MEG provides better 
spatial resolution and makes itself available for source 
localization so that we might accurately decode more brain 
information/minds [3], and eventually it might be possible to 
actually “read” human mind instead of indirect control of 
brain rhythmic activity [4] or slow cortical potential [5] in 
current EEG-based BCI. 
    Human natural voluntary movement is associated with  at 
least two kinds of brain activity that can be  observed in 
EEG/MEG;  Event- related potentials or movement-related 
cortical potentials and the frequency changes  occurring in 
the alpha (8-13Hz) as well as the  beta band (15-30Hz) [6, 
7]. There are two distinct power changes seen in both alpha 
and beta bands, the event-related desynchronization (ERD) 
or power decrease that occurs up to 2 s before movement 
and is sustained with continuous movement [8, 9] and the 
event-related synchronization or power increase, usually 
only seen in beta band, occurring after the end of movement 
[10]. According to human somatotopic studies, human limbs 
are controlled by contra-lateral brain hemispheres. The right 
and left hand movements activate contra-lateral motor areas 
in the brain. In light of these findings, we hypothesized that 
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it may be possible to discriminate human movement 
intentions in a two-dimensional plane using intention to 
sustain right/left hand movements featured by ERD or to 
cease right/left hand movements featured by ERS. As the 
spatial distribution of post movement beta rebound (also 
termed as beta ERS) is more focal than ERD distribution, the 
detection of ERS might be potentially more reliable than 
ERD detection only [11]. Since the spatio-temporal 
resolution of MEG is better than EEG, it is more efficient for 
single trial studies and thus supports high speed 
communication/control. As a result, using MEG for the 
proposed method to discriminate spatial distribution of ERD 
and ERS might provide more accurate classification results 
and lead to a reliable and fast two-dimensional BCI. 

II. METHODS AND DESIGN 

A. Subjects 
    Seven healthy volunteers, 5 male and 2 female (age: 31±8 
years) participated in the experiment. All subjects 
participating in this study were naïve to BCI and right-
handed according to the Edinburgh inventory [12]. The 
protocol was approved by the Institutional Review Board.  
All subjects gave written informed consent for the study. 
 

B. Experimental paradigm 

 
Fig. 1: Experimental paradigm. Activation period: 0s to 1s after 
RESPONSE cue, i.e. 2.5s – 3.5s. Control period: -1s to 0s before the cue of 
Right Yes RYES, Right No RNO, Left Yes LYE, or Left No LNO.  Data 
from the activation and control windows were used for SAM analysis, with 
virtual channels during the activation period used for 
classification/prediction. Instruction cue (RYES, RNO, LYES, or LNO) 
period: 0s - 2.5s, RESPONSE cue period: 2.5s – 4s, STOP (Rest) cue 
period: 4s – 10s 

 
    A visual instruction cue randomly selected from a set of 
four cues: RYES for Right hand Yes, RNO for Right hand 
No, LYES for Left hand Yes, and LNO for Left hand No, 
was presented on a computer screen placed about 50cm 
before the subject (Fig. 1). The subjects were instructed to 
perform either physical or imaginary movements of their 
right or left hand after the initial cue presentation. They had 
to begin with repetitive wrist extensions of the right arm at 
the onset of the initial cue RYES or RNO.  Similarly, for 
LYES or LNO, the same task had to be performed, except 
that the subjects had to use their left hand. After 2.5sec a 
Response signal was displayed at which time the subject, 
depending on the YES or NO cue for the right/left hand had 
to sustain (ERD) or cease (ERS) the hand movements 
respectively. At 4 seconds, a STOP cue was given, the 
response cue disappeared, after which the subject had to 
cease all movements and return to baseline rest. A 6-7 sec 
rest period was given after which the process was repeated. 
During the period of visual stimuli the subjects were asked 

to keep eyes open and reduce blinks as much as possible. 
The subjects were allowed to become familiar with the 
paradigm before data recording. Subjects were asked to keep 
the head still during recording to reduce head motion. 

  

C. Data acquisition and Data processing 
MEG data was recorded at 600 Hz using a 275-channel 

CTF whole head MEG system (VSM MedTech Inc., 
Coquitlam BC, Canada) in a shielded environment. The CTF 
MEG system is equipped with synthetic 3rd gradient 
balancing, an active noise cancellation technique that uses a 
set of reference channels to subtract background 
interference. High-resolution structural MRI images were 
also acquired for co-registration for each subject using a 
magnetization-prepared rapid acquisition by gradient echo 
sequence (MP-RAGE) (TI/TE/TR/FA=725/2.928/7.6/6°, 
FOV=22 cm, partition thickness=1.2mm, 256 x 256, in-
plane voxel size=0.859375). EMG was recorded using 
bipolar electrodes over the right and left wrist extensors. 
This allowed for the exclusion of any trial with movement 
prior to the instruction cue by monitoring for premature 
muscular activity. The physical movement data analysis for 
subject 7 was excluded due to performance glitches during 
data acquisition. For motor imagery, due to the lack of 
number of samples in individual events (RYES, RNO, 
LYES and LNO), for subjects 2 and 6, the data had to be 
excluded. Subject 1 did not participate in the motor imagery 
trial.  
    MEG analysis software developed at NIMH MEG core 
facility was used for epoching data, SAM analysis and MRI 
conversion. The data was epoched across a couple of 
sessions (2-3) according to the marker events for a period of 
9 sec starting 1 sec before the event and continuing 8 sec 
after. All epoched data samples for a similar event were 
combined together to form a grand dataset. The cross 
validation was performed on the pooled single trial samples. 
Before SAM analysis, a multi-sphere head model was 
created for each subject (threshold value ~ 40%) based on 
anatomical images of each subject using MEG analysis 
software. 

 

D. Synthetic Aperture Magnetometry (SAM) Analysis and 
Virtual Channel selection 

    Synthetic Aperture Magnetometry (SAM) [12] was used 
for source localization to improve the signal to noise ratio. 
SAM estimates the source location by focusing the array 
with linear weighting. It uses minimum variance 
beamforming [13] to interferometrically combine the 
SQUID sensor values from MEG. When SAM results are 
combined with MRI, an image of regions of brain showing 
ERD and ERS can be obtained. The proposed BCI will work 
best with ERD/ERS due to the straightforward relationship 
between ERD/ERS and human motor cortex activity. To 
analyze task related brain activity, the beta band frequency 
range (15 to 30 Hz) was fed into SAM. For Physical 
movements (see Fig. 1), the RESPONSE cue to 1 sec after 
cue onset was taken as active state (2.5s – 3.5s) and -1s to 
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movement onset (instruction cue) was set as the control state 
(-1s – 0s) for SAM analysis. For Imaginary movements, the 
response of the subjects to RESPONSE cue was delayed and 
hence, a 0.5 sec delay was introduced for the active state (3s 
– 4s), the control state (-1s – 0s) remained unchanged. SAM 
calculates the covariance between an active and control state 
and uses it to design an optimal spatial filter which creates a 
3D source image, comparing the source strength for the two 
states. This image was superposed on the MRI image and 
regions of high activity were selected for the virtual channel 
analysis (http://kurage.nimh.nih.gov/meglab/Meg/Meg). The 
signals from the specified virtual channels were fed into 
classification techniques developed in home-made 
MATLAB (MathWorks, Natick, MA) Toolbox: brain-
computer interface to virtual reality or BCI2VR [14, 15] 
based on movement related signals which can reliably 
decode movement intentions spatially. From the SAM 
activation maps, we extracted virtual channel data from 
areas of peak activation corresponding to right and left hand 
sustained (ERD) and ceased (ERS) movement activity in 
contra-lateral motor areas. Around 20-30 virtual channels 
were selected for further classification. The virtual channel 
represents a weighted sum of the MEG channel signals using 
the SAM beamformer weights to isolate source activity from 
an area of interest. 

 

E. Feature Extraction and classification 
    The power of all virtual channels signals during 
RESPONSE cue to 1 sec after cue onset was calculated as 
features for classification. 10-fold cross-validation (90% 
training set, 10% testing set) technique was adopted. It was 
intended to discriminate four movement intentions during 
and after movements from single trial virtual channel 
signals. It was of interest to study, whether the right hand 
physical and imaginary movements, ERD/ERS have been 
accurately distinguished from the left hand movements, 
ERD/ERS. In order to test if we have achieved a reliable 
two-dimensional BCI through the data analysis, advanced 
feature extraction and classification techniques were used.  

For genetic algorithm-based Mahalanobis linear distance 
(GA-MLD) classifier, the optimal features were extracted 
using Genetic Algorithm and the selected features providing 
the best cross-validation accuracy were applied to 
Mahalanobis linear distance classifier (see detail method in 
[15]). Multistage classification, i.e., decision tree classifier 
(DTC), to discriminate one intention from others in each 
successive stage was also tested and compared. At each level 
of DTC, the features for one-to-others classification were 
ranked by Bhattacharya distance (see detail method in [15])  
and the 4 features with higher rank were used for 
classification by MLD. The number of features for the 
subset for both GA based MLD and Direct-DTC was 4, 
which was determined from the cross-validation accuracy 
with feature numbers of 2, 4, 6, and 8. 

 
 
 

III. RESULTS AND DISCUSSION 
 

 
       L        R   L    R 
Fig. 2: SAM Image. The Coronal and Axial view of the head is shown for 
Subjects S1 and S3 for physical and imaginary movements respectively. 
Data from the activation and control windows were used to create SAM 
images. The threshold bar for power in ERD/ERS for corresponding 
movement activity is given above each head plot. Virtual channels 
corresponding to ERD (blue)/ERS (red) of contra-lateral motor area 
activation due to movement intentions were selected from areas marked (by 
green circle) for further classification.  
 
 From SAM analysis, it was seen that source localization 
of the intended natural motor behavior was successfully 
achieved. From the SAM image, the ERD and ERS patterns 
corresponding to the sustaining and stopping of right or left 
hand movements in the contra-lateral motor areas can be 
clearly distinguished for physical as well as imaginary 
movements (See Fig. 2). The ERD pattern was bilateral for 
most subjects, requiring co-ordination between both the 
hemispheres of the brain, but generally one lobe was seen to 
be dominant. Bilateral ERS was observed in some subjects 
during motor imagery. For all subjects, it was observed that 
the amplitudes of ERD/ERS were higher for physical 
movements than for imaginary movements (See Fig. 2). The 
reason for this deviation from the hypothesized fact might be 
because imaginary movements take more effort and training 
to achieve while physical movements are natural motor 
behavior. Movement-related signals were used for the 
proposed BCI because they are well defined, natural to the 
user and easy for subjects to learn and control. The problem 
with most BCIs is that subjects rapidly fatigue and there is a 
long training and processing time. Use of natural human 
motor behavior for the proposed BCI accounted for its 
reliability, short processing and training time and made it 
very easy to adapt to. 

Virtual channels obtained from SAM analysis were 
selected from the corresponding ERD/ERS activation areas 
from dominant hemispheres as shown in Fig 2. Location of 
virtual channels for best results varied among subjects. 
Strength and location of cortical activity were different for 
different subjects and activity. Results from classification of 
these virtual channels as features for GA-MLD and direct-
DTC classifiers are shown in Table 1 and Table 2. The 
number of samples used for each subject, obtained from the 
single-trial MEG, for feature extraction is also specified in 
the tables. The classification accuracy for the proposed 
SAM- filtered, MEG-based two dimensional BCI was as 
high as 96.5 ± 2.43% for physical movements and 89.7 
±3.34% for motor imagery using GA-MLD and 93.3± 5.71% 
for physical movements and 72.25 ± 5.8% for motor 
imagery using direct-DTC. 
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Table 1: Physical movements: 10-fold Cross-Validation Accuracy for 
different classifiers using SAM-virtual channel Analysis  
 

 
 

Table 2: Imaginary movements: 10-fold Cross-Validation Accuracy for 
different classifiers using SAM- virtual channel Analysis  
 

 
     
We also tested the decoding accuracy for four movement 
intentions directly from MEG sensor signal; 69.08 ± 3.58% 
for physical movement and 48.43 ± 11.26% for motor 
imagery using GA-MLD and 58.10 ± 5.79% for physical 
movement and 40.68 ± 12.48% for motor imagery using 
DTC. Our results show that SAM-filtered MEG yields very 
high classification accuracy to discriminate between the four 
movement intentions (RYES, RNO, LYES, and LNO). 
These intentions can be used to control four directions in a 
2-D plane and thus achieve a reliable 2-D BCI.   

MEG is expensive and immobile; at present shielded 
rooms are required for data acquisition. As technology 
progresses, there may be portable MEG devices, voiding the 
importance of shielded rooms for recording (see e.g. 
BabySquidw, Tristan Technologies). The whole process of 
SAM analysis in this study was offline. For real-time use, a 
calibration study may be performed to determine the source 
locations of the desired region of interest and using this 
model, the spatio-temporal activities of neural sources, i.e., 
virtual channels signal, can be estimated online. Future study 
is required to explore the robustness of online estimation of 
neural source activities from pre-determined source 
locations. However, the proposed SAM-filtered single-trial 
MEG based BCI may help tremendously in accelerating 
rehabilitation and provide a means for assistive device 
control or communication for patients with severe movement 
disorders. 
 This research has provided an insight on the advantages of 
using MEG as a potential means of interfacing for 
rehabilitation of patients suffering from the “locked in” 
syndrome. The results concur that MEG signals associated 
with human natural motor behavior provide a reliable and 
fast brain-computer interface (BCI) for 2-dimensional 
control.  This is bound to reduce the long-term training for 
conventional BCI methods using rhythm control. This BCI 
could greatly impact the lives of patients suffering from 
ailments such as amyotrophic lateral sclerosis (ALS) or 

spinal cord injury. It may help in their speedy rehabilitation 
and provide a mechanism for mechanical control and 
communication device. 
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