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Abstract— To realize Brain Computer Interface, a record-
ing electroencephalogram (EEG) and determining whether or
not P300 is evoked by the presented stimulus have become
increasingly important. Using the machine learning method for
this classification is effective, but constructing feature vectors
with all data points might result in very high-dimensional
data. Because such redundant features are undesirable from
the viewpoint of computation and classification performance,
EEG has been downsampled in several studies. In the present
study, we propose a new downsampling method aiming at the
improvement of P300 classification accuracy. In particular, each
single trial EEG is segmented at non-uniform intervals and then
averaged in each segment. The segmentation is decided in such a
way that the degree of separating two classes from training data
is increased by applying a time series segmentation algorithm.
Our experiment using the BCI Competition III P300 Speller
paradigm data set demonstrated that our method resulted in
higher accuracy than traditional downsampling methods.

I. INTRODUCTION

The P300 is a kind of positive EEG component, which is
supposed to relate to cognition. It occurs as a response to
rare target stimuli in a series of non-target stimuli (oddball
paradigm). Farwell and Donchin proposed a character input
Brain Computer Interface (BCI) system, which they called
P300 Speller [4]. In this system, the user is presented a 6×6
matrix of characters as shown in Fig. 1, and focuses attention
on the character he wishes to input. Since each row or
column is flashed in a random sequence, the desired character
is flashed twice out of 12 times (i.e., 10 times non-target
stimuli presentation and twice target stimuli presentation).
This task is regarded as an oddball paradigm, and the
P300 component is evoked when the desired character is
flashed. To realize the P300 Speller BCI system, we have
to determine whether or not the P300 component is evoked.
However, since the signal to noise ratio (SNR) of P300 is
very low, classifying with only one flashing sequence may
result in low accuracy. Therefore, the sequence has to be
repeated several times to produce high accuracy. Another
P300-based BCI such as wheelchair control [13] or appliance
selection [8] were proposed, based on the same principle.

The machine learning algorithms have been applied for
classifying P300 components, and a variety of methods have
been investigated to improve classification accuracy. Farwell
and Donchin used Stepwise Linear Discriminant Analysis
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Fig. 1. P300 Speller display

(SWLDA) and considered the output values of the classifier
as the score in the reference that proposed P300 Speller
[4]. Similarly, Bayesian LDA [8], Gaussian kernel Support
Vector Machine (SVM) [9], or ensemble learning approach
have been applied [7][14]. Krusienski et al. compared various
classification techniques regarding P300, and showed that
SWLDA and Fisher Discriminant Analysis (FDA) were
superior to other methods including SVM [10].

To classify P300, it is customary to define a “feature
vector.” The feature vector, in this line of research, is usually
constructed by concatenating EEG time series data acquired
from each electrode. There have been several other feature
vector construction methods proposed. Examples include
applying Mexican hat wavelet [3], Common Spatial Pattern
[11], and subspace approach [15]. However, constructing
feature vectors with all sampled data points might result in
a very high-dimensional vector, which might make us suffer
from the curse of dimensionality. To avoid these problems,
many investigators have applied downsampling to reduce the
dimension of feature vectors. Typically, two approaches have
been primarily used, a decimator approach [7][14], and a
downsampling approach with uniform interval segments [12].
In the current study, we propose a new supervised adaptive
downsampling method to improve the accuracy of P300-
based BCI classification. With this approach, we perform
segmentation at non-uniform intervals as illustrated in Fig. 2
and take the average in each segment. The idea behind this
strategy is based on our assumptions that effective downsam-
pling for P300-based BCI should make for clear differences
between two classes, and at the same time the degree of
separation between two classes should become larger. The
outline of the rest of the paper is as follows. In Section II,
we elaborate our new downsampling method. In Section III,
the processing flow and P300 Speller classification methods
are described. Section IV presents evaluation experiments
and their results, and Section V concludes the paper.
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Fig. 2. Adaptive downsampling and feature vector generation

II. SUPERVISED ADAPTIVE DOWNSAMPLING
The downsampling we propose in this paper is a method

of dividing the raw time series EEG data adaptively into
segments with non-uniform intervals, followed by taking the
average for each interval in order to approximate the original
data with reduced samples. Our main idea is to determine
this interval in a supervised fashion with training data in
advance, so that the degree of separation between two classes
will become maximum. In the following, we describe the
measure of separation between classes, the formulation of
our problem, and the algorithm that we developed.

A. Measure of separation between classes

To separate classes, we need a measure of similarity
or dissimilarity. In this research, we employ the Fisher
Discriminant Criterion (FDC) [5] for this measure. FDC
has been used in Fisher Discriminant Analysis (FDA) as
one of the linear discriminant analysis methods. FDA is
a method of supervised dimensionality reduction, which is
a linear mapping that maximizes the degree of separation
between classes, based on training data. In FDA, we provide
a mapping vector that maximizes the ratio of the squared
average difference between classes to the addition of variance
between classes. We first define the average vectors.

m0 =
1
N0

∑
i:yi=0

xi , m1 =
1
N1

∑
i:yi=1

xi, (1)

where N0 and N1 represent the number of training data for
each class. Next, we define two variances. Specifically, let
the within-class covariance denote

W =
1∑
l=0

∑
i:yi=l

(xi − ml)(xi − ml)T , (2)

while the between-class covariance is denoted by

B = (m0 − m1)(m0 − m1)T . (3)

Then, the FDA mapping vector is given by a vector that
maximizes the variable denoted by “a” in the following
expression:

J(a) =
aTBa
aTWa

(4)

The J(a) in this expression is a FDC. The “a” vector for
two-class discrimination can be represented by an expression
in proportion to some amount of the right-hand formula as
below:

a ∝ W−1(m0 − m1) (5)

By substituting equation (5) into equation (4), we obtain
a Fisher Discriminant Criterion that we will use in this
research:

J = (m0 − m1)TW−1(m0 − m1) (6)

As we noted earlier, FDC represents the degree of separa-
tion between classes after mapping into lower-dimensional
spaces. It is therefore natural to expect FDC to be a measure
of separation even in the original higher dimensional spaces.

B. Formulation

Now we formulate the problem of obtaining the “optimal
segment.” Let E = {(Si, yi)|i = 1, · · · , N} be training
samples, where yi ∈ {0, 1} is a label and Si represents
EEG data or multi-dimensional time series data. Thus, if
a single trial EEG consists of n data points, Si is defined as
Si = {si(1), si(2), · · · , si(n)}, where si(t) ∈ Rd, and d is
the number of channels. Assume that the number of segments
is denoted by k, the breakpoints between segments can be
defined as
T = (τ0, τ1, · · · , τk), where τj ∈ N, τj < τj+1, τ0 = 0, and
τk = n.

We define a MakeVector(Si; T ) function that downsam-
ples an Si and converts it into a vector:

xi(T ) = MakeVector (Si; T )

=

⎛
⎜⎜⎜⎝

1
τ1−τ0

∑τ1
t=τ0+1 si(t)

1
τ2−τ1

∑τ2
t=τ1+1 si(t)
...

1
τk−τk−1

∑τk

t=τk−1+1 si(t)

⎞
⎟⎟⎟⎠ (7)

xi obtained by this function is a d × k dimensional vector.
Consider the training data set Ẽ(T ) = {(xi(T ), yi)|i =
1, · · · , N}, which is obtained by the transformation defined
by equation (7).

Since m0, m1, and W which we define previously are
generated by Ẽ(T ), they are all functions of T . The degree
of separation between two classes based on feature vectors
generated by T is rephrased by equation (6) as follows:

J (T ) = (m0(T )−m1(T ))TW(T )−1(m0(T )−m1(T ))
(8)
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Finally, the problem of finding “segments” that maximize
the degree of separation between classes is reduced to finding
T̂ , which is given by the following formula:

T̂ = argmax
T

J(T ) = argmax
τ0,τ1,··· ,τk

J(τ0, τ1, · · · , τk)

subject to τj ∈ N, τj < τj+1, τ0 = 0, τk = n (9)

C. Algorithm

To solve the equation (9), we seek the optimal T̂ by
modifying Local Iterative Replacement (LIR) [6] into our
time series data segmentation.

In LIR, we first provide the initial value for T , and
then seek the optimal solution. LIR consists of repeated
computation of the selection of boundary between segments,
and the search of new boundary location before or after the
selected boundary, until we obtain a solution that satisfies
equation (9), which is assured to be a local optimum. The
convergence of LIR is described in [6]. The pseudo code of
the algorithm is given below:

Algorithm LIR(E,k)
Input E: training set, k: segment number
Return T̂ : optimal boundary location

1: Initialize boundary T = (τ0, τ1, · · · , τk). Note that τ0 =
0 and τk = n are always fixed.

2: repeat
3: Substitute T into T (pre)

4: for i = 1 to k − 1 do
5: for r = τi−1 + 1 to τi+1 − 1 do
6: Assign Tr to be T except that i-th element (τi)

is replaced by r
7: Transform E into Ẽ(Tr)
8: Save J(Tr) and Tr
9: end for

10: T = argmax
Tr

J(Tr)

11: Reset J(Tr) and Tr
12: end for
13: until T (pre) == T
14: T̂ = T

III. P300 SPELLER CLASSIFICATION METHOD
In this section, we describe a method of learning and P300

Speller classification using feature vectors. For classification,
we employ logistic regression. In logistic regression, assume
that we are given a vector x, the probability of a data item
belonging to a class “1” is represented by the following:

p(y = 1|x) = σ(ψ(x)) =
1

1 + e−ψ(x)
, (10)

where

ψ(x) = θTx + θ0. (11)

From training set {(xi, yi)|i = 1, · · · , N}, we let the system
learn θ, θ0 of equation (11) so that equation (10) produces
the correct probability.

[θ, θ0] = argmin
θ,θ0

(
−

N∑
i=1

ln p(yi|xi)
)

(12)

That is, the problem is reduced to finding θ and θ0.
In our current task, we let the system learn “1” if there

is a letter that a subject is thinking of and would like to
convey to the system, which is included in the flashed rows;
otherwise let the system learn “0”.

When we input the feature vectors of testing data into the
equation (10), in which the learning phase has been done,
the system outputs the probability of the class being “1”, i.e.,
the probability of the target letter exposed to the user as a
stimulus.

Since the main task of P300 Speller is to predict the
letter which a subject is thinking of, we have to determine
the letter using our discriminant criterion. Here, we have
adopted the majority consensus method using the score of
the discriminant function, analogous to the methods proposed
by previous researchers such as [9] and [12]. Specifically, by
using equation (11), we define the following expressions:

r̂(RepNum) = argmax
r

(
RepNum∑
rep=1

ψ(xrow
rep (r))

)
(13)

ĉ(RepNum) = argmax
c

(
RepNum∑
rep=1

ψ(xcolumn
rep (c))

)
(14)

Here, RepNum denotes the number of repetitions,
r = {1, 2, 3, 4, 5, 6} are the row numbers, and c =
{1, 2, 3, 4, 5, 6} are the column numbers. xrow

rep (r) and
xcolumn

rep (c) represent the feature vectors when r-th row (c-th
column) is flashed and the number of repetitions is rep.

IV. PERFORMANCE EVALUATION

A. Experimental Settings

To evaluate the classification accuracy of our method, we
employed a data set, “BCI Competition III dataset II P300
Speller paradigm” [1][2]. This data set consists of training
data with predefined labels and testing data with no labels.
BCI Competition III was a task to predict the input letter of a
subject from EEG time series data. The sampling frequency
of the original data set was 240 Hz, and 64 electrodes
were used to cover different locations of the human head.
The period of a stimulus was 175 ms and the number of
repetitions per letter was 15 times at maximum. The idea is
to predict letters with as few repetitions as possible and as
precisely as possible.

In experiments, we extracted EEG data during 667 ms
from the time a row or a column in the P300 Speller display
was flashed. Since the interval between flashes was 175 ms,
there were overlaps between adjacent flashing. Before our
downsampling algorithm was applied, we normalized the
value into the range [−1, 1] per electrode, and applied a band-
path filter with 0.1 Hz−20 Hz. We employed the fourth-order
type-one Chebyshef filter.

For comparison, we also conducted experiments using
downsampling with a decimator, and downsampling with
uniform interval segmentation.
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(a) Subject A, No. of segments: 9 (b) Subject B, No. of segments: 9

Fig. 3. Comparative accuracy of our downsampling method with other methods. The vertical axis represents the percentage of correctly recognized
characters under different number of repetitions.

TABLE I
COMPARISON BETWEEN OURS AND BCI COMPETITION III WINNER

Algorithm No. of segments 5 Rep 15 Rep
winning method - 73.5 96.5

7 72.5 93.0
8 74.5 93.0

Our Algorithm 9 75.5 94.5
10 75.5 94.5
11 74.0 96.5

B. Results
Fig. 3 shows the accuracy of classification with our

methods. For subject A, our method turned out to be very
effective if the number of repetitions of the flashing was
small, while for subject B, our method was almost equal to
or slightly better than previous methods such as a decimator
and a method with uniform interval downsampling. The
comparison between our method and the winner of the BCI
Competition III is summarized in Table I. It is demonstrated
that our methods outperform the method by Rakotomamonjy
(winner) [14], if the repetition number is 5 except when the
number of segments is 7, and if the repetition number is 15
and the number of segments is 11.

V. CONCLUSION
We proposed a new supervised adaptive downsampling

method and evaluated our method using BCI Competition
III P300 Speller Test data. We demonstrated that our method
outperformed a decimator method and a downsampling
method with uniform interval segments. In addition, by
using a single discriminator based on logistic regression, we
showed that our system was superior to the winner of the
BCI III Competition, who used multiple SVMs. It would
be possible to incorporate our method into a sophisticated
ensemble discriminator, since our method relies on down-
sampling alone.
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