
 

 

 

 

Abstract—The Filter Bank Common Spatial Pattern 
(FBCSP) algorithm performs autonomous selection of key 
temporal-spatial discriminative EEG characteristics in motor 
imagery-based Brain Computer Interfaces (MI-BCI). However, 
FBCSP is sensitive to outliers because it involves multiple 
estimations of covariance matrices from EEG measurements. 
This paper proposes a Robust FBCSP (RFBCSP) algorithm 
whereby the estimates of the covariance matrices are replaced 
with the robust Minimum Covariance Determinant (MCD) 
estimator. The performance of RFBCSP is investigated on a 
publicly available dataset and compared against FBCSP using 
10××××10-fold cross-validation accuracies on training data, and 
session-to-session transfer kappa values on independent test 
data. The results showed that RFBCSP yielded improvements 
in certain subjects and slight improvement in overall 
performance across subjects. Analysis on one subject who 
improved suggested that outliers were excluded from the robust 
covariance matrices estimation. These results revealed a 
promising direction of RFBCSP for robust classifications of 
EEG measurements in MI-BCI. 

I. INTRODUCTION 

he Common Spatial Pattern (CSP) algorithm is effective 

in constructing optimal spatial filters that discriminates 

two classes of EEG measurements in motor-imagery-based 

Brain-Computer Interface (MI-BCI) [1], [2]. The Filter Bank 

Common Spatial Pattern (FBCSP) algorithm was recently 

proposed to select subject-specific operational frequency 

band for extracting discriminative CSP features [3]. 

Although FBCSP is a simple method of selecting appropriate 

subject-specific band-pass filtering for the CSP algorithm, it 

performed the best relative to other international submissions 

in the BCI Competition IV dataset IIa and IIb [4]. 

The FBCSP algorithm used the classical estimation of 

multivariate covariance matrices from the EEG 

measurements for a filter bank of CSP [3]. However, EEG 

measurements are often contaminated with outliers, such as 

artifacts or non-standard noise sources [5], that deviate from 

the usual pattern of the majority of the data [6]. If the EEG 

measurements are contaminated with even a few extreme 

outliers, the multivariate covariance estimates typically 

differs substantially from the estimate without the outliers 

[6]. Hence, FBCSP is sensitive to outliers in the training 

data. 
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Robust techniques such as channel removal, outlier trial 

removal, and normalization were first proposed to reduce the 

influence of outliers in EEG-based BCI in [5]. The study 

investigated EEG data of 8 subjects and results revealed that 

outlier trial removal was useful for robust classification of 

EEG measurements for MI-BCI. However, certain robust 

technique improved performance of some subjects but 

deteriorated the performance of others. Hence the study 

suggested that there is no overall best robust technique and 

that subject-specific robust technique has to be chosen. 

Recently, a robust CSP algorithm was proposed [7] to 

replace the estimation of the covariance matrices with the 

robust Minimum Covariance Determinant (MCD) estimator, 

and the computation of the variance of the CSP projected 

EEG with the Median Absolute Deviation (MAD). The study 

investigated EEG data of 5 subjects from the BCI 

Competition III Dataset IVa using robust CSP and non-

robust CSP. The results showed effectiveness of robust CSP 

on artificially introduced outliers, but results showed slight 

deterioration of performance compared to non-robust CSP 

on the data without artificially introduced outliers. 

This paper proposes a Robust Filter Bank Common 

Spatial Pattern (RFBCSP) whereby the estimates of the 

covariance matrices are replaced with the MCD estimator. 

Another variant of RFBCSP is also presented that used MCD 

and replaced the computation of the variance of the CSP 

projected EEG with MAD. The performances of these two 

variants of RFBCSP are investigated on the BCI 

Competition IV dataset IIb [8] using 10×10-fold cross-
validations on training data and session-to-session transfer 

on the test data. The performances are compared with the 

non-robust FBCSP [3] that out-performed other submissions 

for this dataset [4]. 

The remainder of this paper is as follows: Section II and 

III describe the FBCSP algorithm and the proposed RFBCSP 

algorithm respectively. Section IV presents the experimental 

results and section V concludes this paper. 

II. FILTER BANK COMMON SPATIAL PATTERN 

The Filter Bank Common Spatial Pattern (FBCSP) 

algorithm [3] illustrated in Fig. 1 comprises 4 progressive 

stages of signal processing and machine learning on the EEG 

measurements. The CSP projection matrix for each filter 

band, discriminative CSP features, and classifier model are 

computed from training data labeled with the respective 

motor imagery action. These parameters are used to 

discriminate motor imagery actions from single-trial EEG 

measurements in the evaluation phase. The following 
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describe each stage in more detail: 
 

 
Fig. 1. Architecture of the Filter Bank Common Spatial Pattern (FBCSP) 

algorithm for the training and evaluation phases. 
 

A. Band-pass filtering 

The first stage employs a filter bank that decomposes the 

EEG into multiple frequency pass bands using causal 

Chebyshev Type II filter. A total of 9 band-pass filters are 

used, namely, 4-8 Hz, 8-12 Hz,…, 36-40 Hz. 

B. Spatial filtering 

The second stage performs spatial filtering using the CSP 

algorithm. The CSP algorithm is highly successful in 

calculating spatial filters for detecting Event Related 

Desynchronization or Event Related Synchronization 

(ERD/ERS) in the EEG measurements [1]. Each pair of 

band-pass and spatial filter in the first and second stage 

computes the CSP features that are specific to the band-pass 

frequency range. Spatial filtering is performed using the CSP 

algorithm by linearly transforming the EEG measurements 

using 

 
, ,

T

b i b b i
=Z W E , (1) 

where Eb,i∈ℝ
c×t
 denotes the single trial EEG measurement 

for the i
th
 trial from the b

th
 band-pass filter; Zb,i∈ℝ

c×t
 denotes 

Eb,i after spatial filtering; Wb∈ℝ
c×c
 denotes the CSP 

projection matrix for the b
th
 band; c is the number of 

channels; t is the number of EEG samples per channel; and 
T
 

denotes transpose operator. 

The CSP algorithm computes the transformation matrix 

Wb to yield features whose variances are optimal for 

discriminating 2 classes of EEG measurements [9-12] by 

solving the eigenvalue decomposition problem 

 ( ),1 ,1 ,2b b b b b b= +Σ W Σ Σ W D , (2) 

where ∑∑∑∑b,1 and ∑∑∑∑b,2 are estimates of the covariance matrices 

of the b
th
 band-pass filtered EEG measurements of the 

respective motor imagery action, Db is the diagonal matrix 

that contains the eigenvalues of ∑∑∑∑b,1. 

Since band-pass EEG measurements have approximately 

zero mean values, the covariance matrices are estimated by 
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1ˆ
1

T

b b b
t n

ω ω ω
ω

=
× −

Σ E E , (3) 

where ω=1, 2; Eb,ω∈
( )*c t nω×

ℝ denotes the concatenated EEG 

measurements of all the trials in the training data for the 

motor imagery action of class ω, t is the number of EEG 

samples per channel, and nω denotes the number of trials in 

the training data that belongs to class ω. 
The spatial filtered signal Zb in equation (1) using Wb 

from equation (2) thus maximizes the differences in the 

variance of the 2 classes of band-pass filtered EEG 

measurements. The m pairs of CSP features for the b
th
 band-

pass filtered EEG measurements is then given by 

 ( )( )log / trT T T T

b b b b b b b b b
diag  =  cf W E E W W E E W , (4) 

where cfb∈ℝ
2m
;

b
W  represents the first m and the last m 

columns of Wb; diag(⋅) returns the diagonal elements of the 

square matrix; tr[⋅] returns the sum of the diagonal elements 

in the square matrix. 

The FBCSP feature vector for the i
th
 trial is then formed as 

follows 

 [ ]1 2 9
, , ,

i
=x cf cf cf… , (5) 

where xi∈ℝ
1×(9*2m)

, i=1,2,…,n; n denotes the total number of 

trials in the training data. 

The FBCSP feature matrix from training data is then  

 1 2

T
T T T

n
 =  X x x x… , (6) 

where X∈ℝn×(9*2m)
. 

C. Feature selection 

The third stage employs a feature selection algorithm, 

namely the Mutual Information-based Best Individual 

Feature (MIBIF) algorithm [13], to select discriminative 

CSP features from X for the subject’s task.  

Given a set of features 1 2 9 2, ,
T T T

m× = = F f f f X…  such that 

X is from equation (6), 
T

j
f ∈ℝn×1

 is the j
th
 column vector of 

X; MIBIF selects k best features that results in the highest 

estimate of mutual information with the class labels. Based 

on the study in [3], k=4 is used. Since the CSP features are 

paired, the corresponding CSP features that come in pairs 

with the selected k features are also included as well. The 

feature selected training data is denoted as n d×∈X ℝ  where 

d ranges from 4 to 8. 

D. Classification 

The fourth stage employs a classification algorithm, 

namely the Naïve Bayesian Parzen Window (NBPW) 

classifier [13], to model and classify the selected CSP 

features. The classification rule of NBPW is given as 

 ( )
1,2

argmax |p
ω

ω ω
=

= x , (7) 

where p(ω|x) denotes posterior probability of the class being 
ω=1,2, given the random trial [ ]1 2

, ,
d

x x x=x …  and d 

denotes the number of selected features from the third stage. 

For further details on the FBCSP algorithm, the reader is 

referred to [3]. 
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III. ROBUST FILTER BANK COMMON SPATIAL PATTERN 

Many multivariate datasets contain outliers that deviate 

from the patterns of a majority of the data [5], [6]. Thus the 

use of the classical multivariate method to estimate the 

covariance matrices of EEG measurements in the CSP 

algorithm is sensitive to outliers [7]. Robust statistics, on the 

other hand, provides alternatives to the classical statistical 

estimates that are not affected by outliers [14]. A measure of 

robustness of an estimator is the breakdown value, which 

states the smallest amount of outlier contamination that can 

have arbitrarily large effect on the estimator [6]. 

A. Minimum Covariance Determinant estimate 

The non-robust CSP algorithm has an inherent breakdown 

value of 0 [7]. Thus the robust CSP algorithm was proposed 

[15] to replace the classical multivariate estimate with the 

Minimum Covariance Determinant (MCD) estimator. 

The FBCSP algorithm, which uses the classical 

multivariate estimate in equation (3), also has an inherent 

breakdown value of 0. Therefore, the Robust Filter Bank 

Common Spatial Pattern (RFBCSP) is proposed to replace 

equation (3) with the MCD estimator 

 
( ), , ,

1ˆ ˆ ˆ
1

T

b b b
t n

ω ω ω
ωα

=
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Σ E E , (8) 

where 

 
, ,

ˆ

ˆ ˆargmin
b bω ω

ε ε⊂
=E Σ ; (9) 

(1-α) is the fraction of outliers to resist, α=[0.5, 1]; ε is the 
set of t*nω c-dimensional elements of Eb,ω∈ 

( )*c t nω×
ℝ ; ε̂  is 

the subset of ε containing α*t*nω  c-dimensional elements of 

Êb,ω∈
( )* *c t nωα×

ℝ ; and ⋅  denotes determinant. 

The MCD estimator in equation (9) thus computes a 

defined fraction α of the data such that the determinant of the 

estimate of the covariance matrix is minimized. The issues of 

the MCD estimator are that it depends on the initial estimates 

and it is iterative [15]. The FASTMCD algorithm resolves 

these issues by drawing multiple random subsets of the data 

and iteratively approximates towards a lower determinant 

[15]. The implementation of FASTMCD is available as the 

MATLAB function “mcdcov” in the LIBRA Toolbox from 

[16]. 

B. Median Absolute Deviations estimate 

The non-robust CSP algorithm uses the classical variance 

estimate of the spatial filtered signal. Hence, the robust CSP 

algorithm proposes replacing the classical variance estimate 

with the Median Absolute Deviation (MAD) estimate [7]. 

Similarly, in the proposed RFBCSP algorithm, the use of 

the classical variance estimate of the spatial filter signal in 

the equation (4) can be replaced with the Median Absolute 

Deviation (MAD) estimate [14] given by 

 ( )( )( )
2

1.4826 med medT T

b b b b b
= × −cf W E W E , (10) 

where med(A) gives the median of the rows of A. 

IV. EXPERIMENTAL RESULTS 

This section evaluates the performance of the proposed 

RFBCSP algorithm on the BCI Competition IV dataset IIb 

[8]. The dataset consists of 9 subjects whereby the training 

data for each subject comprises 3 sessions of single-trial 

EEG data from 3 bipolar recordings (C3, Cz and C4) while 

the subject performed 2-class hand motor imagery. The first 

2 sessions consist of 240 single trials without visual feedback 

and the third session consist of 160 single trials with visual 

feedback to the subject. The selections of the training 

sessions to be used as training data for each subject are based 

on the winners of the BCI Competition IV dataset IIb [4]. 

The evaluation data consists of 2 sessions of single-trial EEG 

data, totaling 320 trials. 

The running classification performance of the proposed 

RFBCSP with MCD (denoted MCD), and the variant of 

RFBCSP with MCD and MAD (denoted MCDMAD) are 

compared against the non-robust FBCSP on the training data 

using 10×10-fold cross-validations. For running 

classification, the same EEG time segment of 0.5 to 2.5s 

relative to the visual cue is used for training and validation 

[17]. The MCD and MCDMAD are configured with the 

default α=0.75 implemented in the “mcdcov” function from 

the LIBRA toolbox [16]. The results presented in Table I 

showed that MCD yielded better accuracies for subjects 2, 7 

and 9 (shaded in gray). The results also showed that MCD 

yielded slightly better overall accuracy than non-robust 

FBCSP (79.21% versus 79.20, p=0.97) and MCDMAD 

yielded poorer accuracy (78.06%, p=0.20), but both are not 

statistically significant using paired-sample t-test. 
 

TABLE I 

RESULTS IN VALIDATION ACCURACIES OF RUNNING CLASSIFICATION USING 

FBCSP, RFBCSP WITH MCD, AND RFBCSP WITH MCDMAD 

 Subjects  

Method 1 2 3 4 5 6 7 8 9 AVG 

77.32 56.73 61.05 98.63 85.88 81.81 85.88 87.06 78.44 79.20 
FBCSP 

±0.51 ±1.15 ±1.28 ±0.26 ±0.60 ±1.54 ±2.54 ±0.42 ±0.53 ±0.98 
77.18 58.13 59.85 98.56 85.81 79.94 86.88 87.44 79.13 79.21 

MCD 
±0.39 ±1.57 ±1.34 ±0.30 ±1.10 ±1.57 ±2.19 ±0.46 ±0.84 ±1.09 
78.32 53.60 57.93 97.50 80.63 78.50 89.00 87.81 79.25 78.06 

MCDMAD 
±0.92 ±1.73 ±1.46 ±0.00 ±1.21 ±1.75 ±0.44 ±0.53 ±0.87 ±0.99 

            

The session-to-session transfers of MCD, MCDMAD are 

then evaluated and compared with the non-robust FBCSP on 

the evaluation data in terms of kappa values. The kappa 

value is computed using the BIOSIG toolbox [18]. For static 

classification, the EEG time segment of 0.5 to 2.5s relative 

to the visual cue is used for training, then the entire time 

segment from a single trial is used for evaluation [17]. The 

results presented in Table II showed that MCD yielded better 

kappa values for subjects 1, 3, 5 and 6 (shaded in gray). The 

results also showed that MCD yielded slightly better overall 

kappa value compared to the non-robust FBCSP (0.606 

versus 0.585, p=0.11) and MCDMAD yielded poorer overall 

kappa value (0.568, p=0.06), but both are not statistically 

significant using paired-sample t-test. It is noted that the 

overall kappa value of RFBCSP with MCD is relatively 
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better than the winner of this dataset [4]. 
TABLE II 

EXPERIMENTAL RESULTS IN KAPPA VALUES OF STATIC CLASSIFICATION 

USING FBCSP, RFBCSP WITH MCD, AND RFBCSP WITH MCDMAD 

 Subjects  

Method 1 2 3 4 5 6 7 8 9 AVG 

FBCSP 0.356 0.171 0.169 0.963 0.850 0.594 0.556 0.856 0.750 0.585 

MCD 0.363 0.171 0.256 0.956 0.869 0.669 0.563 0.856 0.750 0.606 

MCDMAD0.319 0.143 0.150 0.931 0.775 0.569 0.594 0.888 0.744 0.568 
 

Since the results in Table II showed that the kappa value 

of subject 3 is significantly improved from 0.169 for non-

robust FBCSP to 0.256 for MCD, a further analysis is 

performed to investigate the band-pass filtered EEG 

measurements that are selected by RFBCSP but excluded by 

MCD. Fig. 2(a) shows the plot of a single trial of EEG 

measurements from the training data of subject 3 that are 

band-pass filtered from 4-8 Hz without outliers identified by 

MCD. Fig. 2(b) shows the plot of a single trial of EEG 

measurements with more than half of the time-samples 

identified as outliers by MCD. The plot of the latter shows a 

relatively high amplitude EEG data that are band-passed 

using 4-8 Hz, which could suggest the presence of artifacts. 
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(a) (b) 

Fig. 2. (a) Plot of a signal trial from the training data of subject 3 without 

outliers identified by MCD, (b) plot of a trial from the training data of 

subject 3 with more than half time samples identified as outliers by MCD. 

V. CONCLUSIONS 

The Filter Bank Common Spatial Pattern (FBCSP) 

algorithm is sensitive to outliers because it involves multiple 

estimations of covariance matrices from the EEG 

measurements. This paper proposes a Robust FBCSP 

(RFBCSP) algorithm whereby the estimates of the 

covariance matrices are replaced with the robust Minimum 

Covariance Determinant (MCD). Another variant of 

RFBCSP that used MCD and replaced the variance estimate 

of the spatial filter signal with the Median Absolute 

Deviation (MAD) is also presented. The performances of 

RFBCSP with MCD, and RFBCSP with MCD and MAD are 

investigated on the BCI Competition IV dataset IIb and 

compared against the non-robust FBCSP using running and 

static classification. 

Experimental results showed that RFBCSP with MCD 

yielded improvements in certain subjects. The results also 

showed that RFBCSP with MCD yielded slight overall 

improvements in both static and running classification, even 

though the improvements are not statistically significant. 

However, the results showed that RFBCSP with MCD and 

MAD yielded deterioration. These results suggest a 

promising direction of replacing the classical multivariate 

covariance estimates with the robust MCD, but not to replace 

the variance estimate of the spatial filter signal with MAD. 

Further analysis on one of the subjects with improved 

performance suggested that outliers were excluded from the 

estimation of the covariance matrices. Thus the results in this 

study revealed a promising direction in RFBCSP on robust 

classifications of EEG measurements for MI-BCI. 
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