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Abstract— In this study human motor cortical activity was
recorded with a customized micro-ECoG grid during individual
finger movements. The quality of the recorded neural signals
was characterized in the frequency domain from three different
perspectives: (1) coherence between neural signals recorded
from different electrodes, (2) modulation of neural signals
by finger movement, and (3) accuracy of finger movement
decoding. It was found that, for the high frequency band (60-120
Hz), coherence between neighboring micro-ECoG electrodes
was 0.3. In addition, the high frequency band showed significant
modulation by finger movement both temporally and spatially,
and a classification accuracy of 73% (chance level: 20%) was
achieved for individual finger movement using neural signals
recorded from the micro-ECoG grid. These results suggest that
the micro-ECoG grid presented here offers sufficient spatial and
temporal resolution for the development of minimally-invasive
brain-computer interface applications.

I. INTRODUCTION

Brain-computer interface (BCI) technology aims to estab-

lish a direct link between the brain and external devices,

enabling faster and more intuitive communication and con-

trol for individuals with severe motor impairments. One of

the major challenges in translating BCI technology from

basic research into clinical practice is the development of

a minimally invasive technique for obtaining reliable long-

term recordings with high spatial and temporal resolution.

Electrocorticography (ECoG) records brain activity with

intracranial electrodes placed directly on the brain surface.

Recent studies have demonstrated that subjects can achieve
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effective control of cursor movement in a very short period

of time using ECoG signals, suggesting ECoG is a promising

modality for BCI applications[1][2].

Unlike many previous ECoG studies where cortical ac-

tivity was recorded with large grids of subdural ECoG

electrodes[1][2][3], the current study used a micro-ECoG

grid (Fig. 1). By reducing the electrode diameter and inter-

electrode distance, we expect that the micro-ECoG grid can

record localized neural activity with high specificity and

spatial resolution[4]. This study compares neural signals

recorded with a standard ECoG grid and a custom micro-

ECoG grid. We hypothesize that the coherence of the high

frequency band (60-120Hz) recorded by neighboring elec-

trodes of the micro-ECoG grid will be the same or lower

than that of the standard ECoG grid, indicating greater signal

independence.

Previous studies in non-human primates have shown that

individual finger movements can be decoded with a high ac-

curacy (> 80%) from the activity of 20 30 neurons recorded

with microelectrodes inserted into the hand area of the motor

cortex[5][6]. This study also examines whether micro-ECoG

recording can differentiate individual finger movements with

accuracies comparable to those of previous single-neuron

studies.

II. MATERIALS AND METHODS

A. Human subjects and behavioral paradigm

This study was approved by the University of Pittsburgh

Institutional Review Board and followed all guidelines for

human subject research. The subject was a 17-year old

right-handed female undergoing monitoring for intractable

epilepsy with seizure foci in the left temporal lobe. At the

beginning of each session, approximately one minute of

baseline data were acquired when the subject relaxed with

eyes open. During the finger movement task, the subject was

instructed to perform self-paced individual finger movements

(finger flexion and extension) for approximately 10 seconds

per finger, beginning with the thumb and ending with the

little finger. A minimum of 9 repetitions were conducted

for each finger movement. The BCI2000 software package

was used to prompt the subject on which finger to move[7].

Finger movements were recorded with a 14-sensor 5DT data

glove[8].

B. ECoG recording

A standard clinical ECoG grid (Ad-Tech, Corp.) with 32

disc electrodes (3mm in diameter for the contact area, 10mm

586

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



center-to-center distance) was implanted subdurally over the

left temporal lobe and inferior frontal lobe for epilepsy

seizure monitoring. In addition, an experimental micro-

ECoG grid was implanted subdurally superior-posterior to

the standard ECoG grid and anterior to the central sulcus

over the motor cortical area. The micro-ECoG grid (Ad-

Tech, Corp.) consisted of 16 disc electrodes (contact area

diameter 1.5mm, 4mm center-to-center distance) arranged in

a 4-by-4 pattern (Fig. 1). Two corner electrodes in the micro-

ECoG grid were designated as reference electrodes, and the

remaining 14 electrodes were used for neural recording. All

ECoG signals were band-pass filtered between 0.1 to 200 Hz

and sampled at 1200 Hz using the g.USBamp amplification

system (Guger Technologies, OEG) in conjunction with

BCI2000.

C. Coherence analysis

Coherence analysis was used to characterize independence

between neural signals recorded from different electrodes for

both the experimental micro-ECoG grid and the traditional

ECoG grid[9]. Coherence analysis was performed using

baseline data (i.e. rest periods) for all possible pairs of

electrodes in the micro-ECoG grid and for all possible pairs

of electrodes in the regular ECoG grid. In addition, coherence

was analyzed as a function of distance between electrodes

and compared between the micro-ECoG grid and the regular

ECoG grid.

D. Finger movement and classification

Individual finger movements were decoded using neural

signals recorded from the micro-ECoG grid. The spectral

powers of ECoG signals were calculated over the 0-200 Hz

frequency band using the maximum entropy method with 3

Hz frequency bins[10]. Classification was performed using

spectral power data calculated over periods of individual

finger movement. Features were defined as the spectral power

within a particular frequency band for a given channel.

A total of 938 features (67 frequency bands across 14

channels) were derived from the micro-ECoG grid. A one-

way analysis of variance (ANOVA) was used to identify

features modulated by finger movement. To control for the

multiple comparisons arising from the size of the feature

set, the false discovery rate (FDR) method was used to

determine the p-value threshold for statistical significance

(FDR=0.05)[11]. Significantly modulated features were then

used for finger movement classification using two different

methods. In the first method, principle component analysis

(PCA) was used for further dimensionality reduction, with

the number of principle components chosen to maximize

classification accuracy. The resultant feature set was then

used to classify finger movements using Linear Discriminate

Analysis (LDA)[12]. In the second method, classification was

performed using multi-class linear support vector machines

(SVMs) without PCA-based dimensionality reduction[13].

Leave-one-out cross validation was used in both classifica-

tion methods.

4 mm

10 mm

Fig. 1. Head x-ray (lateral view) showing the locations and sizes of
the implanted ECoG electrodes. One micro-ECoG grid (16 contacts), one
regular ECoG grid (32 contacts), and two 6-contact regular ECoG strips
were implanted. Inset: A side-by-side comparison of the regular ECoG grid
and the micro-ECoG grid showing the center-to-center electrode spacing.

III. RESULTS

A. Coherence of baseline ECoG data

Coherence values between neural signals recorded from

all possible pairs of electrodes in the micro-ECoG grid and

all possible pairs in the regular ECoG grid were calculated

to examine the correlation between those signals in the

frequency domain. Fig. 2A compares the coherence values at

various frequencies between neighboring electrodes for the

micro-ECoG (4mm center-to-center spacing) and the regular

ECoG grid (10mm spacing). For both grids, coherence was

found to decrease at higher frequencies. The lower coherence

in the high frequency band between neighboring electrodes

suggests that it may reflect a more localized neuronal activ-

ity than the lower frequency bands. Furthermore, between

neighboring electrodes, the high frequency band was found

to be less coherent for the micro-ECoG grid than for the

regular grid. Additionally, coherence of the high frequency

(60-120 Hz) band was examined as a function of inter-

electrode distance. Fig. 2B shows that the decrease of high

frequency band coherence with increasing inter-electrode

distance. Furthermore, the high frequency band coherence

was found to be significantly smaller for the micro-grid than

for the regular grid at comparable distances (approx. 10mm).

This suggests that the micro-ECoG grid offers higher spatial

resolution for neural recording.

B. ECoG signal modulation by finger movement

Fig. 3 shows the movement at the five proximal inter-

phalangeal (PIP) joints for 9 repetitions of individual finger

movements (flexion and extension). The subject was able to
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Fig. 2. Coherence analysis for the micro-ECoG grid (red lines) and the
regular grid (blue lines). 2A (left): Averaged coherence between neighboring
electrodes. 2B (right): Coherence as a function of distance between elec-
trodes. Error bars are standard deviations. Coherence values were calculated
at all possible inter-electrode distances given the geometric configurations
of the electrodes on the grids.

move each finger individually with the exception of the little

finger, whose movement tended to couple with that of the

ring finger. Movement of different fingers elicited distinct

patterns of activity on individual electrodes on the micro-

grid, most notably in the high frequency (60-120 Hz) range.

The bottom row of Fig. 3 shows spectrograms of individual

finger movements for channel 11. A clear increase in the high

frequency band power is evident during finger movement,

with the power varying significantly for different fingers

(p < 0.05). Furthermore, different finger movement produced

distinctive spatial patterns of activity across the micro-grid

(Fig. 3, top row). These results indicate that neural signals

recorded from the micro-grid carry significant information

about finger movement.

Decoding analysis was performed to directly test whether

finger movement information can be extracted with high

accuracy. Among all 938 features, 95 features were found

to be significantly modulated by finger movement using

the ANOVA analysis with FDR correction. Both multi-class

SVM classification without PCA dimensionality reduction as

well as LDA classification using eight principal components

achieved accuracies of 73% (leave-one-out cross validation,

chance level: 20%).

IV. DISCUSSION AND CONCLUSIONS

The major advantages of micro-ECoG grids are that they

can be implanted with a minimally invasive procedure and

that they offer higher spatial resolution than the standard

clinical ECoG grids for cortical recording. This allows the

extraction of control signals with high specificity using a

much simpler recording system than single-neuron recording,

which will accelerate the development of fully-implantable

practical brain-computer interface devices. However, engi-

neers are still searching for the optimal configuration in

terms of electrode diameter and inter-electrode distance to

achieve reliable neural recording while maximizing informa-

tion extracted from a micro-ECoG grid. Although electrodes

with a small diameter can presumably record very localized

cortical activity, it may be difficult for these electrodes

to maintain adequate contact with the brain surface for

ECoG recordings[14]. Furthermore, while spatial resolution

can potentially be increased by reducing the inter-electrode

distance, the shunting effect between electrodes may become

prominent at these distances, leading to correlated signals

across electrodes[14]. Electrodes in the micro-grid used in

this study exhibited lower coherence at the high frequency

bands (Fig. 2) than that observed in the regular ECoG grid,

indicating a significant amount of independence between

them for recording cortical activity with high spatial reso-

lution.

Arguably, two random signals that contain little useful

information can have very low coherence, as well. We do

not believe this is case in the current study. The electrodes in

the micro-grid demonstrated modulation by finger movement

both temporally and spatially (Fig. 3). Also, high accuracy

was achieved for decoding individual finger movement, in-

dicating that the micro-grid used in this study offers high

resolution neural recording from a small patch of the cortex.

The pioneering studies by Schieber and his colleagues

have demonstrated in non-human primates that there is

generally a mixed representation of digits in the hand area of

the motor cortex and that finger movement can be decoded

from a very confined cortical volume[5][6][15]. This may

be the underlying neuronal mechanism for the high accuracy

obtained in finger movement decoding. We observed stronger

cortical activation by thumb and index finger movement over

a group of electrodes on the micro-grid (Fig. 3). This may

suggest that, on top of the mixed finger representation, there

might be a certain degree of clustering in neurons repre-

senting thumb and index finger movement in human motor

cortex. It is also possible that more neurons are dedicated

to thumb and index finger movement since those two digits

contribute significantly to dexterous hand movement.

In summary, this paper describes a micro-ECoG grid

that can record human cortical activity with high spatial

and temporal resolution. High accuracy was achieved for

decoding individual finger movement. This represents the

first description of finger movement decoding using micro-

ECoG recording in humans. We conclude that micro-ECoG

recording is a promising method for obtaining high quality

signals for BCI control.

V. ACKNOWLEDGEMENT

We would like to thank the participant who kindly made

it possible for us to perform this study. We would also

like to thank the clinical staff of the epilepsy monitoring

unit at the Childrens Hospital of Pittsburgh. We would also

like to acknowledge Ms. Patricia Lordeon and Mr. Clinton

Young for their engineering and technical support. We thank

Dr. Gerwin Schalk for helpful discussions regarding ECoG

recording and BCI2000 software.

REFERENCES

[1] Eric C Leuthardt, Gerwin Schalk, Jonathan R Wolpaw, Jeffrey G
Ojemann, and Daniel W Moran. A brain-computer interface using
electrocorticographic signals in humans. J. Neural Eng., 1(2):63–71,
Jun 2004.

588



150

100

50

0 0.5

Time (s)

0 0.5

Time (s)

F
r
e
q

u
e
n

c
y

 (
H

z
)

−50

0

50

100

150

%
 C

h
a
n

g
e
 f

r
o
m

 B
a
s
e
li

n
e

Thumb Index Middle Ring Pinky

   

 

−40

−20

0

20

40

60

%
 C

h
a
n

g
e
 f

r
o
m

 B
a
s
e
li

n
e

 

 

 

 

 

01

02

03

04

05

06

07

08

09

10

11

12

13

14

01

02

03

04

05

06

07

08

09

10

11

12

13

14

01

02

03

04

05

06

07

08

09

10

11

12

13

14

01

02

03

04

05

06

07

08

09

10

11

12

13

14

01

02

03

04

05

06

07

08

09

10

11

12

13

14

Posterior

Medial

Thumb

Index

Middle

Ring

Pinky

Open

Hand

Max

Flexion

Fig. 3. Modulation of neural signals recorded by the micro-ECoG grid during individual finger movements. The five columns from left to right correspond
to instructed thumb, index, middle, ring, and little finger movement, respectively. Top row: Spatial pattern of 60-120 Hz band activity averaged over
movement and across all trials for all 14 recording electrodes on the micro-ECoG grid. Numbers indicate electrode locations. Middle: Movements of five
fingers (PIP joint angles) from nine repetitions. PIP joints exhibiting the most significant change during this task were chosen for analysis. All joint angle
data has been normalized to the angle of thumb PIP joint during maximum thumb flexion. Vertical dotted lines represent onset of finger movement. Bottom
row: Spectrograms (spectral power change from baseline as a function of both frequency and time) averaged across all trials for Electrode No. 11. Again,
vertical dotted lines represent onset of finger movement.

[2] G Schalk, K J Miller, N R Anderson, J A Wilson, M D Smyth,
J G Ojemann, D W Moran, J R Wolpaw, and E C Leuthardt. Two-
dimensional movement control using electrocorticographic signals in
humans. J. Neural Eng., 5(1):75–84, Mar 2008.

[3] Kai J Miller, Eric C Leuthardt, Gerwin Schalk, Rajesh P N Rao,
Nicholas R Anderson, Daniel W Moran, John W Miller, and Jeffrey G
Ojemann. Spectral changes in cortical surface potentials during motor
movement. J Neurosci, 27(9):2424–32, Feb 2007.

[4] J Kim, J A Wilson, J Hippensteel, J Hokanson, W Wang, K Smith,
K J OTTO, W Shain, D J Webber, L A Krugner-Higby, D W Moran,
and J C Williams. A cortical microecog platform utilizing thin film
polymer electrode arrays. In Proceedings of Society for Neuroscience

Annual Meeting. Society for Neuroscience, 2008.
[5] S Ben Hamed, M H Schieber, and A Pouget. Decoding m1 neurons

during multiple finger movements. Journal of Neurophysiology,
98(1):327–33, Jul 2007.

[6] Soumyadipta Acharya, Francesco Tenore, Vikram Aggarwal, Ralph
Etienne-Cummings, Marc H Schieber, and Nitish V Thakor. Decoding
individuated finger movements using volume-constrained neuronal
ensembles in the m1 hand area. IEEE transactions on neural systems

and rehabilitation engineering : a publication of the IEEE Engineering

in Medicine and Biology Society, 16(1):15–23, Feb 2008.
[7] Gerwin Schalk, Dennis J McFarland, Thilo Hinterberger, Niels Bir-

baumer, and Jonathan R Wolpaw. Bci2000: a general-purpose brain-
computer interface (bci) system. IEEE transactions on bio-medical

engineering, 51(6):1034–43, Jun 2004.
[8] Ramana Vinjamuri, Mingui Sun, Donald Crammond, Robert Sclabassi,

and Zhi-Hong Mao. Inherent bimanual postural synergies in hands.
Conference proceedings : Annual International Conference of the

IEEE Engineering in Medicine and Biology Society IEEE Engineering

in Medicine and Biology Society Conference, 2008:5093–6, Jan 2008.
[9] P Stocia and R Moses. Introduction to Spectral Analysis. Upper

Saddle River, NJ: Prentice-Hall, 1997.
[10] D McFarland, L McCane, S David, and J Wolpaw. Spatial filter

selection for eeg-based communication. Electroencephalography and

clinical Neurophysiology, Jan 1997.
[11] Christopher R Genovese, Nicole A Lazar, and Thomas Nichols.

Thresholding of statistical maps in functional neuroimaging using the
false discovery rate. NeuroImage, 15(4):870–8, Apr 2002.

[12] G J McLachlan. Discriminant Analysis and Statistical Pattern Recog-

nition. Wiley-Interscience, 2004.
[13] N Cristianini and J Shawe-Taylor. An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods. Cambridge
University Press, 2000.

[14] J O Ollikainen, M Vauhkonen, P A Karjalainen, and J P Kaipio. Effects
of electrode properties on eeg measurements and a related inverse
problem. Medical engineering & physics, 22(8):535–45, Oct 2000.

[15] M Schieber and L Hibbard. How somatotopic is the motor cortex
hand area? Science, Jan 1993.

589


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

