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Abstract— A brain-computer interface (BCI) to detect motor
imagery from cerebrum hemodynamic data measured by NIRS
(near-infrared spectroscopy) was constructed and the effect
of the online feedback training for subjects was evaluated.
Concentrations of Oxy- and deOxy-hemoglobin in the motor
cortex during motor imagery of subject’s right hand was
measured by 52-channel NIRS system, and the mean magnitude
of measured signal near C3 in the International 10-20 System
was visually fed back online to the subject. On two out of
three subjects, it was shown that the ratio between the averaged
value and the standard deviation over trials (S/N ratio) of Oxy-
hemoglobin signal elicited by the imagery of subject’s right
hand was increased by the 5-day online feedback training.
Detailed investigation of the effect of the online feedback
training on brain activities was left for further study.

I. INTRODUCTION

For the better communication of severe paralyzed patients
due to stroke, spinal cord injury or motor neuron diseases
like ALS (amyotrophic lateral sclerosis), the Brain-Computer
Interface (BCI) has attracted interest [1]. On the BCI system,
brain activities were measured noninvasively by EEG (elec-
troencephalogram) or NIRS (near-infrared spectroscopy),
and the measured signals were analyzed to extract and detect
user’s intensions or “thoughts”.

On the EEG-based BCI to detect motor imagery, the
increase (event-related synchronization: ERS) or decrease
(event-related desynchronization: ERD) of EEG band power
on μ or β frequency range is generally observed when the
subject imagines movement of his/her own limb, and such
features have been used for command detection [2], [3].
But the low S/N ratio and poor reproducibility of EEG
elicited by motor imagery have hindered improving accuracy
of detection.

Pfurtscheller et al. and the authors have proposed the
“Brain Switch” BCI system to detect a motor imagery from
one channel of EEG, on which the power increase (ERS)
of EEG β oscillation due to motor imagery is detected on
threshold-basis [4], [5]. This system enables binary switching
only by using one channel of EEG. And the authors have also
reported that training was effective to improve the accuracy
and reproducibility on this system [5].
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Then, the authors investigated the effect of online feedback
training to improve S/N ratio of band power at the “target”
frequency band in the Brain Switch system [6]. In this study,
EEG band power of interest for command detection was
visually fed back to the subjects, and they were asked to
increase the band power during motor imagery. It was shown
that the online feedback training improved the S/N ratio and
reproducibility of the target frequency component in EEG,
but if the features for feedback information (frequency band,
electrode location or montage) were not selected correctly,
such a training would cause negative effects. Especially, to
specify the appropriate range and the central frequency of
EEG is important, because several narrow-range frequency
components of EEG which were related to motor imagery
were embedded in the range of about 8 to 35 Hz and the
central frequencies were not fixed during the online feedback
training process [6].

In this study, we focused on a BCI system to detect motor
imagery of the user’s limb using NIRS measures. NIRS
is a measure of the metabolic rates of Oxy- and deOxy-
hemoglobin (Oxy-Hb, deOxy-Hb) which are elicited by the
regional activation of the brain. Rich spatial resolution of
NIRS is suitable to determine the limb of motor imagery,
because the execution or imagery of the limb movement is
represented as a localized activation in the sensorimotor area.

And, due to the slow change of hemodynamic levels, fre-
quency range of NIRS signals elicited by the brain activation
is narrow. Various profiles of electric activity of neuronal
network (e.g. change of rate and synchrony of neuronal
firing) are represented by the slow increase or decrease
of hemodynamic concentration. Therefore, on the feedback
training for BCI based on motor imagery, NIRS measurement
has advantages that the precise parameter setting to extract
features is not needed to detect information on the brain
activity and that such information is straightforward for users
to interpret as a feedback of brain activity.

In this article, the effect of online feedback training on
the BCI system to detect motor imagery from NIRS signals
measured at the sensorimotor area is reported. NIRS-based
BCI systems to detect motor imagery have been tested by
Coyle et al. [7] and Sitaram et al. [8], but in these studies,
online feedback training by using NIRS signals has not been
executed.

II. METHODS

A. Online Feedback Training System for NIRS-based BCI

The online feedback training system for NIRS-based
BCI was developed. This system consisted of the NIRS
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Fig. 1. Online feedback training system for NIRS-based BCI

Fig. 2. Setting of probes for NIRS measurement

measurement system (ETG-4000, Hitachi Medical Corpo-
ration, Japan) and two laptop PCs (Fig. 1). PC1 generated
triggers which indicated the onset and offset of the tasks
which subjects were instructed to do, and sent them to the
NIRS measurement system via a serial connection port. The
NIRS measurement system measured 52-channel Oxy-Hb
and deOxy-Hb levels at the sampling frequency of 10 Hz.
These data were acquired and were transported to PC2 via
Ethernet. On PC2, the feedback data was calculated from
the data received from the NIRS measurement system, and
was presented together with the timing of the tasks on
LCD display of PC2. Both PCs worked on Windows XP
Professional, and MATLAB is used for experimental control
and analysis.

B. Calculation of Feedback Data L(t)

The feedback data L(t), which was presented to the
subject online during experiments, was calculated by the
following way; three channels were chosen for each sub-
ject from the contralateral (left) hand area of right hand
movement (near C3 in the International 10-20 System on
EEG measurement). The Oxy-Hb data taken from these three
channels were then averaged, and after applying a high-pass
filter at 0.04 Hz (Chebyshev Type II) to reduce drifts, the
data was smoothed by 7-point simple moving average.

C. Experiment

Three volunteers (ages 21∼22) took part in the experiment
as subjects. The experiments in our study were approved
by the Ethics Committee on Clinical Investigation, Grad-
uate School of Engineering, Tohoku University, and was
performed in accordance with the policy of the Declaration
of Helsinki. Subjects who sat in front of the LCD display
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Fig. 3. Time chart of experimental paradigm

connected to PC2 were requested to gaze at a short horizontal
line (fixation line) shown on the display.

During experiments, 52-channel Oxy-/deOxy- hemoglobin
concentration rates were measured. The wavelengths of the
irradiation light were 780 and 830 nm. Thirty-three probes
used to measure responses were arranged on a 3-by-11 probe
holder. The center of the probe holder was near CZ as defined
by the International 10-20 System, and the holder was set so
as to cover the sensorimotor cortex. (Fig. 2)

The time chart of this experiment is shown in Fig. 3. The
subject was instructed to imagine movement of his/her own
right hand for 20 seconds from time 0. One second before
starting the task, a beep tone was presented as a warning. The
fixation line was colored green and turned red during imagery
period. Additionally, a vertical white bar whose length was
proportional to the feedback data L(t) was displayed all the
time. Bar length was updated on every 0.5s. Inter-stimulus
interval was randomly varied from 40 to 43 s.

The subject was instructed to control the length of the
presented white bar by the imagery of his/her right hand
movement: as long as possible during imagery period, and
as short as possible during resting state.

The online feedback training experiments were conducted
for 5 days. Experiments on each day consisted of 6 sessions,
each of which had 5 trials of motor imagery. Before and
after the 5-day online feedback training experiments, the
evaluation experiments of 3-class motor imagery (left, right
and feet movement imagery) without feedback were executed
for evaluating the effect of the online feedback training. (The
results on left hand and feet movement imagery were not
used for the present study.)

III. RESULTS AND DISCUSSION

The responses to motor imagery were determined, and the
effect of the online feedback training on the activation in
the sensorimotor cortex was investigated. The signal-to-noise
ratio and the spatial distribution of measured Oxy-Hb signals
were evaluated.

A. Changes of Feedback Data L(t)
The change of the feedback data L(t), presented to the

subject during the online feedback training as a length of a
white bar, was investigated.

Although high-pass filter was applied to the original signal
which was averaged over selected 3-channel data, L(t) still
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Fig. 4. Example of averaged responses (thick lines) and their standard
deviation (thin lines) on each training day (Subject 1). Black bars denote
the period of motor imagery.

(a) Peak value

(b) S/N ratio

Fig. 5. Averaged Oxy-Hb concentration value at peak latency during motor
imagery. (a) Peak value and standard deviation, (b) S/N ratio.

contained certain low frequency variations due to drifts.
But the changes elicited by motor imagery were observed
in L(t), and it was reported by the interviews after the
experiments that all the subjects recognized such changes
during the experiments. It is expected, therefore, that the
overall information on the change of Oxy-Hb concentration
was actually fed back to the subjects during the online
feedback training.

B. Changes of L(t) Averaged Over Trials

To evaluate the effect of the online feedback training on
the target Oxy-Hb value, L(t) was averaged over trials and
was evaluated with its standard deviation.

The averaged value V (t) was calculated by the following;
L(t) on each trial was extracted from −5 to 60 s from
onset of the motor imagery task, and the trend due to drift
was removed by linear approximation, by using the averaged
values of the data at −5 to −3 s and 58 to 60 s.

V (t) and its standard deviation over trials on each day
in the online feedback training experiments to Subject 1
is shown in Fig. 4. It can be found that, on this subject,
the peak value during motor imagery was increased as the
training went on. On the other hand, the variation of standard
deviation on training day was small.

Next, the change of the peak value of Oxy-Hb concentra-
tion and its standard deviation during 5-day online feedback
training was evaluated. The peak Oxy-Hb concentration
value and its standard deviation over trials, and the S/N
ratio (defined by the peak value divided by the standard
deviation at the same latency) on all subjects are shown in
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Fig. 6. Example of the spatial distribution of Oxy-Hb concentration at
peak latency during motor imagery.

Fig. 5. It was shown that the positive peak value of V (t)
increased by training on Subjects 1 and 2, and that the
standard deviation at the peak latency was not changed by
training on all subjects (Fig. 5(a)). Then on these subjects,
the S/N ratio increased during the 5-day training sessions
(Fig. 5(b)). These results mean that the magnitude of cortical
activation elicited by motor imagery and its reproducibility
were improved by the online feedback training. It will help
the improvement of the accuracy of the BCI based on motor
imagery.

C. Change of Spatial Distribution of the Response

It is generally known that the specific contralateral site on
the sensorimotor area is activated when the subjects execute
or imagine body movement (“motor homunculus”). In case of
the right hand, the change of activation of the hand area in the
left hemisphere (near EEG location C3) is mainly observed
by EEG, MEG, NIRS and fMRI. The object of such motor
imagery can be determined from the spatial distribution of
cortical activation.

Spatial distributions of Oxy-Hb concentration before and
after the online feedback training were compared by the
results of experiments without feedback which were executed
before and after 5-day online feedback training. Fig. 6
shows an example of the spatial distribution of Oxy-Hb
concentration at the latency of peak activation during motor
imagery. Before starting the online feedback training, the
Oxy-Hb activation was widely distributed to the whole area.
But after completing 5-day online feedback training, large
activation on the contralateral hand area (near the left hand
area on the motor cortex, anterior to C3), small activation on
the ipsilateral hand area (anterior to C4) and on the vertex
area (near CZ) were observed. This result suggests that the
spatial distribution of cortical hemodynamics became more
localized by the online feedback training. On Subject 2,
Oxy-Hb activation became larger on both contralateral and
ipsilateral site, and on Subject 3, no characteristic activation
was observed after 5-day online feedback training.

It has been shown that the activation of the motor cortex
elicited by motor imagery is weaker than that by motor
execution [9], and the functional relationships between motor
cortex, SMA (supplementary motor area) and other related
areas during motor execution/imagery have been discussed
[10]. More detailed investigations using EEG/MEG or fMRI
as well as NIRS are left for further studies.

IV. CONCLUSION

A BCI system that detects motor imagery by NIRS mea-
surements with online feedback was constructed, and the
result of the online feedback training was reported in this
article. On two subjects out of three, it was shown that
after 5-day online feedback training, magnitude and its S/N
ratio of Oxy-Hb hemodynamics during motor imagery were
improved, and the spatial localization of Oxy-Hb activations
became more localized. Experiments to verify the present
results with more subjects, and more precise investigations
by using multimodal measurements (EEG/MEG, fMRI and
NIRS) were left for further study.
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