
 

  
Abstract—A Brain-Computer interface (BCI) is a 

communication system that enables the generation of a control 
signal from brain signals such as sensorymotor rhythms and 
evoked potentials; therefore, it constitutes a novel 
communication option for people with severe motor disabilities 
(such as Amyotrophic Lateral Sclerosis patients). This paper 
presents the development of a P300-based BCI. This prototype 
uses a homemade six-channel electroencephalograph for the 
acquisition of the signals, and a visual stimulation matrix; since 
this matrix contains letters of the alphabet as well as images 
associated to them, it permits word-writing and the elaboration 
of messages with the images. To process the signals the software 
BCI2000 and MATLAB 7.0 were used. The latter was used to 
program three linear translation algorithms (Stepwise Linear 
Discriminant Analysis, Lineal Discriminant Analysis and Least 
Squares) to convert the brain signals into communication 
signals. These algorithms had a classification accuracy of 90.73 
%, 95.75 % and 89.45 % respectively, when using raw data; 
and of 90.78%, 49.48 % and 53.9 %, when data was previously 
common-average filtered. The experimental setup was tested in 
ten healthy volunteers; 5 of them got a 100% success, 1 a 90% 
success, 2 an around 70% success and 2 a 50% success, in the 
online free-spelling tests. 
 
Keywords— Augmentative and alternative communication, 

Brain-Computer Interface, Electroencephalography, Motor 
disabilities, P300 cognitive evoked potential, Signal processing, 
Translation algorithms.  

I. INTRODUCTION 

ince Hans Berger’s original publication in 1970, the 
electroencephalogram (EEG) has been used to evaluate 

clinic neurological disorders and to perform laboratory-
based research on brain-physiology. During all this time, 
researchers have considered the idea of using EEG to 
decipher thoughts and, more precisely, to allow patients the 
communication with others or the control of devices through 
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the direct measurement of his/her brain-activity, disregarding 
muscular and peripheral information [1, 2, 3]. Although 
these ideas could be seen like popular fiction, real 
possibilities to develop brain-controlled devices have been 
found, due to the strong correlation between EEG-signals 
and both real or imagined movement and mental tasks [4], 
and to the fast and continuous development of low-cost EEG 
multi-channel online analysis software and hardware [1]. 

As an outcome of this research, Brain-Machine Interfaces 
(BMI), which include Brain-Computer Interfaces (BCI), 
were developed [5, 6]. To build a functional BMI, it is 
necessary to develop a robust signal acquisition and 
recording system, accurate online algorithms to translate 
brain-signals into motor activity or messages, a method to 
provide feedback to the user and, finally, a prosthesis or 
another device susceptible of being directly controlled by 
these signals. Once these objectives are achieved, BMI will 
constitute a very effective technology to restore motor 
control in patients with Spinal Cord Injury, Amyotrophic 
Lateral Sclerosis, Cerebral Palsy, among others [7]. 

Several laboratories have developed BCI systems [8-10, 
11-14, 15] for people with different motor disabilities. 
However, a typical BCI is designed specifically for a 
particular brain-signal type and a determined neurological 
disorder; thus, it is not appropriate to the systematic research 
that is essential for continuous advancement. In response to 
this problem, The Wadsworth Center (Albany, New York) 
created a multi-purpose system called BCI2000 [16], which 
consists of four modules: data acquisition and storage, 
signal-processing, user application and operator interface. 
BCI2000 facilitates the experimentation of different BCI 
methods and, therefore, leads to the development of 
personalized BCIs [5]. 

In Latin-America, few groups have performed research on 
BCI. One of the most outstanding is the University of 
Entrerrío’s research group; recently, they designed a P300-
based BCI to control a wheelchair [10, 17]. In Colombia, 
according to the review performed, there were so far no 
groups conducting research on BCI-related topics, in spite of 
the large amount of people with motor disabilities that the 
Statistics National Administrative Department (DANE) 
reported in 2007 (185,736 people with limitations for arms, 
hands and legs movement and 125,454 with nervous system 
disorders) [18]. This fact motivates the scientific Colombian 
community to perform research in this area.  

In this paper, the development of a P300 based BCI 
experimental setup is presented (P300 is a cognitive evoked 
potential). This prototype was designed for people with 
motor disabilities and communication problems. Through a 
visual stimulation matrix, that contains both alphabet letters 
and images associated to them, enables the user to write 
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messages. To acquire and process the signals, as well as to 
program the translation algorithms, BCI2000 and MATLAB 
were used. 

II. MATERIAL AND METHODS 

A. Materials 
Hardware: Eight gold cup electrodes, conductive gel 

(TEN20 and bentonite), operational amplifiers (TL071, 
AD620), isolation amplifiers (AD210), laptop PC, National 
Instruments acquisition software and hardware and an 
impedance-measurement circuit.  

Software: MATLAB 7.0, BCI2000. 

B. Methods 
1) Signal acquisition and conditioning 
To acquire the P300 signal, a six-channel 

electroencephalograph was designed and built. Fig. 1 shows 
the modules each channel has.  

 
 
 
 
 
 
 
Fig. 1. Blocks diagram of each channel of the developed electroencephalograph 
 
Earth and reference electrodes were located, respectively, 

on right and left mastoids; the rest, on Fz, Cz, Pz, Oz, C3 
and C4 [17]. To measure electrical impedance between the 
electrodes and the scalp, a simple impedance-measurement 
circuit was designed [19]. Two conductive gels were used to 
reduce impedance: TEN-20 [20] and bentonite [19]. After 
the electrodes, a passive high-pass filter to eliminate the DC 
voltage produced by them was implemented and to minimize 
the common-mode voltage, we connected a reference 
electrode to a driven-right-leg circuit [21].  

The active Butterworth band-pass filter implemented (0.3 
Hz-15 Hz) was a fifth-order one. Its purpose was eliminating 
the other EEG signals and, at the same time, electromagnetic 
60 Hz noise, electrocardiographic and electromyographic 
activity.  

To digitize the signals, a National Instruments DAQ USB-
6016 and a BCI2000 contribution were used. Sample 
frequency was set to 512 Hz.   

 
2) Signal processing 
To process the EEG signal, a Graphical User Interface 

(GUI) was built in MATLAB 7.0. The function 
“load_bcidat”, included in BCI2000 off-line analysis tools, 
was used to charge the acquired data. Load_bcidat(files) 
turns in three matrixes: signal, states and bciParams, files 
corresponds to a .dat archive that contains the information 
acquired by the electrodes. The first matrix, “signal”, 
contains the EEG signal that was recorded during the test 
time. The second matrix, “bciParams”, contains the 

parameters defined before the test: block size, sample 
frequency, offset and the channel gain, among others. 
Finally, the matrix “states” contains two vectors that will be 
very important to process the training signals: Stimuluscode 
and Stimulustype. The former contains the information about 
the start and the total duration of the stimulus for each icon 
of the matrix. It is composed by numbers that represent the 
icon that has been stimulated and the stimulus duration (this 
numeration is done by BCI2000). The second vector is 
binary and is equal to one when an icon that was selected for 
training is illuminated, and equal to zero in the rest of cases. 
With these vectors the signals are separated in two groups: 
“Epochs with P300” and “Epochs without P300”. The GUI 
“Analysis off-line P300” was created to graphic both of 
them.   

The GUI to process signals, allows the selection of the 
decimation frequency, the time window ( i.e. the signal in 
ms after the visual stimulus that will be analyzed for the 
presence of P300), the maximum number of iterations that 
the translation algorithm will perform (just necessary for the 
stepwise lineal discriminant analysis) and the group of 
channels that will be considered. Furthermore, it offers the 
possibility to use a common average reference (CAR) filter.  

First, the groups of signals, “Epochs with P300” and 
“Epochs without P300” are filtered and then decimated. The 
function filter (Matlab) is used to filter the signals. The CAR 
filter, when chosen, is applied later.  

 
3) Translation algorithms 
After filtering and decimating, the class marker vector 

label is generated. Label= 1 in the positions where signal 
has P300, and Label=-1, in the positions where the signal 
does not. 

Three linear translation algorithms were programmed to 
label the signal: Fisher's linear discriminant (FLD), Least 
squares (LS) and Stepwise Lineal Discriminant Analysis 
(SWLDA). We developed linear algorithms, because they 
are simple to program, do not demand high computer cost 
(like neuronal networks, e.g.), and have showed a very good 
performance [22].   

FLD and LS were coded in MATLAB 7.0, and the 
function stepwisefit, included in the same software, was used 
for SWLDA. The latter has an extra value because it allows 
the selection of channels that did the best P300 signal 
discrimination. 

 
4) Stimulation matrix 
In the BCI2000 window called “application”, the 

stimulation strategy to evoke P300 is defined. A 4x3 (rows x 
columns) matrix was created (Fig. 2) due to the fact that this 
matrix dimension showed a good classification performance 
in earlier experiments [23]. This matrix allowed the direct 
selection of concrete actions of daily life, feelings and 
simple communication sentences, like “I am ok” or “I am 
not ok”.  Furthermore, it allowed writing words with the 
letters associated to each icon. In this way, the user could 
write messages with icons or words.  
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Fig.  2.  4 rows x 3 columns stimulation matrix It has letters and icons. 
5) Experiments 
To test our brain computer interface we first located 
electrodes on user’s scalp. Then, we performed four 
training experiments. In each of them, the subject has to 
spell a 4-character word. The objective of training is to 
make the system able to recognize the P300 potentials of 
each user.  
In our system, each letter (or icon) flashed 30 times (15 

the corresponding row and 15 the corresponding column). 
The letters remained intensified for 100 ms, and not 
intensified for 300 ms. 

If the user wanted to select a specific letter, he had to 
count the number of times it flashed. The fact of counting 
allows the generation of the P300 evoked potential. For 
example, suppose that in the first training experiment the 
user had to spell the word IDEA. When letter “I” flashed, the 
user had to count, but, for instance, when letter “B” 
twinkled, the user did not have to. In this case, P300 did not 
appear after B’s flash, but after I’s. 

With the training data and any translation algorithm, the 
weights vector could be generated. This vector was charged 
in BCI2000 and the free-spelling mode experiment was 
carried out. In this kind of test, the user selected the word he 
wanted to spell, counting 30 times each desired letter (icon).  

6) Statistical analysis 
To test the BCI experimental setup, five males and five 

females between 14 and 25 years were taken, all of them 
without motor disabilities. For each person, the percentages 
of classification with all the translation algorithms (with and 
without CAR respectively) were calculated and the 
algorithm with the best classification percentages was used 
in the free-spelling mode test.  

III. RESULTS 
The homemade electroencephalograph developed worked 

out properly. Table I shows the classification percentages 
obtained with the different translation algorithms, for each 
volunteer. Fig. 3 shows the success percentages for each 
subject, in the free-spelling mode experiments. In these 
experiments, the translation algorithm with the best 
classification percentage for each user was used. When the 
user was right in the row, but not in the column, and vice 
versa, a 50% success was assumed. 

 
 
 
 
 

TABLE I. CLASSIFICATION PERCENTAGES OBTAINED FOR EACH 
VOLUNTEER WITH THE THREE TRANSLATION ALGORITHMS 

PROGRAMMED 

SWLDA LDA LS SWLDA LDA LS
1 (F) 94 94 94 94 81 81
2 (F) 88 94 94 88 0 88
3 (M) 75 94 81 94 88 13
4 (M) 69 88 88 69 44 56
5 (F) 100 100 100 100 100 94
6 (M) 81.25 87.5 62.5 81.25 6.25 12.5
7 (F) 100 100 94 94 13 38
8 (F) 100 100 81 100 50 50
9 (M) 100 100 100 100 100 94
10 (M) 100 100 100 87.5 12.5 12.5
Average 90.725 95.75 89.45 90.775 49.475 53.9

Raw Comon Average Filter

 

 Fig.3.Success percentages for each volunteer in the free-spelling mode experiments 

IV. DISCUSSION 
It is necessary to be careful in order to guarantee user’s 

security and to take action to reduce noise propagation in 
order to minimize its impact on EEG signals; therefore, the 
design of circuitry with earth ground planes, adequate wires 
shields and circuits to eliminate common-mode voltages is 
strongly recommended. 

When surface electrodes are used to record bio-potentials, 
conductive gels are necessary to reduce skin impedance. 
Thus, to guarantee the efficiency of a specific gel, 
impedance measurements are recommended. For this 
purpose, simple impedance measurement systems can be 
built. Both bentonite and TEN-20 worked out very well in 
our experiments, regarding that the former is much cheaper 
than the latter. 

 On the other hand, to ensure a satisfactory signal 
transmission, it is necessary to adequately locate the 
electrodes and ensure their complete adhesion to the user’s 
scalp. If the gel does not guarantee this, adhesive bandages 
should be used.  Another important factor to take into 
account is that the conductive gel’s effectiveness diminishes 
with time. That is why, EEG signals recorded at the 
beginning have better quality than the signals acquired at the 
end of the tests. 

Although the goal is to obtain a peak in 300 ms, 
sometimes it does not happen, because the P300 presence 
strongly depends on the user concentration and on the 
quality of the acquired signal. Therefore, what really means 
is that the classifier finds a characteristic feature 300 ms or 
any other time less than 1000 ms after the stimulus. 
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Due to the fact that a BCI user must evidence a very high 
concentration level, it is important to provide him/her a 
comfortable position. Therefore, cushion chairs are 
suggested.  

Stimulus and inter-stimulus duration must be defined 
according to the user, so he/she can easily detect the flashes. 
Moreover, icons must be optimally distributed across the 
screen and have an adequate size.  If a low-RAM computer 
is used, it is recommended to use two computers, instead of 
one:  one for the EEG signals recording and another one for 
visual stimulation and translation and signal processing 
algorithms execution.  

To assure computational efficiency, it is recommended to 
use decimation processes, since the amount of EEG data is 
usually very big and can even be redundant [10]. 

Classification percentages above 70% evidence the user 
has a characteristic feature that can be recognized by a 
translation algorithm.  

In some experiments (see Table I), a null (when using 
LDA) and very low classification percentages were obtained 
(when using LDA and LS).  This could be explained by the 
fact that these algorithms do not perform a channel selection, 
what makes that in some cases they come up with singular or 
near to singular matrixes. That is why channel-selection 
algorithms (such as SWLDA) are strongly recommended.  

Finally, it is crucial to modify the stimulus duration, 
matrix design, and number of flashes for this BCI to be 
effectively useful for users with motor disabilities.  

V. CONCLUSION 
A P300-based BCI experimental setup was built. The six-

channel electroencephalograph and the signal processing 
algorithm worked satisfactorily for the programmed 
translation algorithms, which led to a good classification, as 
the success percentages were always above 50% for ten 
healthy volunteers. Testing the BCI experimental setup with 
people with motor disabilities will be the next step to 
validate its real effectiveness. We are in contact with the 
foundation “Aula Abierta” in Medellin, Colombia, to start 
the process with children with motor disabilities; the idea is 
to validate this BCI prototype, and to include new 
algorithms that work with mu and beta rhythms. 

Finally, it is important to highlight the fact that this is the 
first approach to the BCI world in our country and there are 
a lot of applications that can come out from it (BCI-
controlled-wheel-chairs, BCI-controlled-prosthesis, among 
others) and many other EEG signals to discover that can 
solve many problems for handicapped people in the region. 
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