
  

 

Abstract— Energy consumption is an important consideration 

for battery-powered implantable stimulators. We used a 

genetic algorithm (GA) that mimics biological evolution to 

determine the energy-optimal waveform shape for neural 

stimulation. The GA was coupled to NEURON using a model of 

extracellular stimulation of a mammalian myelinated axon. 

Stimulation waveforms represented the organisms of a 

population, and each waveform’s shape was encoded into 

genes. The fitness of each waveform was based on its energy 

efficiency and ability to elicit an action potential. After each 

generation of the GA, waveforms mated to produce offspring 

waveforms, and a new population was formed consisting of the 

offspring and the fittest waveforms of the previous generation. 

Over the course of the GA, waveforms became increasingly 

energy-efficient and converged upon a highly energy-efficient 

shape. The resulting waveforms resembled truncated normal 

curves or sinusoids and were 3-74% more energy-efficient than 

several waveform shapes commonly used in neural stimulation. 

If implemented in implantable neural stimulators, the GA 

optimized waveforms could prolong battery life, thereby 

reducing the costs and risks of battery-replacement surgery. 

I. INTRODUCTION 

 MPLANTABLE neural stimulators assist thousands of 

individuals with neurological disorders. These devices are 

battery-powered, and when the battery is depleted, the entire 

device must be replaced through an invasive and expensive 

surgery. The frequency of battery-replacement surgeries 

could be reduced by increasing the energy efficiency of 

stimulation, which is dependent upon stimulation parameters 

such as pulse width (PW) and waveform shape. 

The relationship between energy efficiency and PW of 

rectangular pulses is well documented [1-5], but the 

relationship between energy efficiency and waveform shape 

is not as straightforward. The energy-optimal waveform 

shape cannot be determined analytically due to the 

complexity and non-linearity of the equations that define the 

excitable membrane. Also, since the number of possible 

waveform shapes is infinite, the energy-optimal shape 

cannot be determined through a ―brute force‖ method of 

testing every possibility. For problems such as these, 

solutions may be found using numerical methods known as 

global optimization algorithms. The goal of this study was to 
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seek the energy-optimal waveform shape for neural 

stimulation using a genetic algorithm (GA). This algorithm 

was applied in a computational model of extracellular 

stimulation of a mammalian myelinated axon for a wide 

range of PWs. The outcome of these simulations was a set of 

waveform shapes that were more energy-efficient than 

several waveforms commonly used in neural stimulation. 

The GA waveforms could prolong the lifetime of 

implantable stimulators, thus reducing the costs and risks of 

battery-replacement surgery. 

II. METHODS 

A. Overview of Genetic Algorithms 

Genetic algorithms seek optimal solutions through a 

process that mimics biological evolution. The first 

generation of a GA begins with a population of candidate 

solutions, which are analogous to organisms, and the 

―genes‖ of each solution are the parameters that define the 

solution. Then, the fitness of each solution is evaluated with 

a cost function specific to the optimization problem. Next, 

the solutions ―mate‖ with one another, producing offspring 

solutions that possess a combination of the parents’ genes. 

Then, the genes of the offspring are mutated. Both the 

mating process and mutations promote a wide exploration of 

the solution space to increase the chance of discovering the 

global optimum rather than a local optimum. At the end of 

each generation, the population is partially or entirely 

replaced by the offspring. Over time beneficial genes remain 

in the gene pool of the population while unfavorable genes 

are weeded out. This process of selection and mating is 

repeated either for a fixed number of generations or until the 

solutions converge upon a fitness value, and the solution 

with the greatest fitness is the resulting estimate of the 

optimum solution. 

B. Specific Implementation of the Genetic Algorithm 

We designed a GA to seek the energy-optimal waveform 

shape in a computational model of nerve fiber stimulation. 

Simulations of extracellular stimulation of a single 

myelinated mammalian peripheral axon were run in 

NEURON [6] using the MRG model (fiber diameter = 11.5 

μm) [7]. Stimulation was delivered through a current-

regulated point source located within a conductive medium 

(300 Ω-cm) at a distance of 1 mm directly above the center 

node of the fiber. 

Each generation of the GA consisted of a population of 50 
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stimulation waveforms with fixed pulse width (PW). 

Waveforms were discretized in time using a time step equal 

to that of the computational model (dt = 0.002 ms), and the 

amplitude at each time step was represented by a gene (e.g. 

the genes of an increasing ramp waveform would increase in 

value at a constant rate [0 1 2…]). The values of the genes 

of the waveforms of the first generation were chosen 

randomly from a uniform distribution between 0 and two 

times the cathodic threshold of stimulation with a 

rectangular waveform at equivalent PW. The cost function, 

F, of each waveform equaled the energy consumed by the 

stimulation pulse, E, plus a considerable penalty if the 

waveform failed to elicit an action potential: 

PenaltyEF   (1)
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where P is instantaneous power, t is time, I is current, Z is 

load impedance, and N is the number of discretizations 

(genes) of a stimulation waveform. In our simulations, the 

output impedance was assumed to be linear:
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Penalty was 0 if the waveform elicited an action potential, 

and 1 nJ/ohm (2 to 3 orders of magnitude larger than E) if it 

did not.  

F was not used to select parents for mating but was used 

to select waveforms to survive to the next generation. Each 

waveform had an equal chance of being selected as a parent 

to promote a wide search of the solution space. Each 

offspring was produced by combining the genes of two 

parents through two crossover points. Then, each gene was 

mutated by scaling the value by a random value chosen from 

a normal distribution (μ = 1, σ2 = 0.025). Amplitudes were 

never allowed to be positive, thus restricting waveforms to 

monophasic cathodic pulses. At the end of each generation, 

all but the top 10 fittest waveforms (i.e. smallest F) in the 

population were replaced by offspring waveforms. 

The GA was run multiple times using several different 

parameters. To determine whether the outcome of the GA 

was dependent on PW, we ran the GA for a wide range of 

PWs (0.02, 0.05, 0.1, 0.2, 0.5, 1, and 2 ms). For each PW, 

the GA was run for 5 independent trials, each for 10,000 

generations and with different initial populations.  For each 

trial, we recorded the most energy-efficient waveform of the 

final generation (GA waveform) and the energy consumed 

by the most energy-efficient waveform of each generation 

(generation energy). For each PW, we calculated the mean 

and standard error of the energy consumed by the GA 

waveforms across trials, and these values of energy were 

used to construct an energy-duration curve. The GA energy-

duration curve was compared to energy-duration curves of 

waveform shapes commonly used in neural stimulation: 

square, increasing/decreasing ramp, increasing/decreasing 

exponential, and sinusoid. 

C. Population Model 

The GA waveforms were tested in a model of a 

population of axons consisting of 100 parallel MRG axons 

(11.5-μm diameter) distributed uniformly within a cylinder 

with 3-mm diameter. Extracellular stimulation was delivered 

through a point source electrode located at the center of the 

cylinder. For each PW (0.02, 0.05, 0.1, 0.2, 0.5, 1, and 2 

ms), 10 random axon populations were chosen. Then, for 

each population, input/output (I/O) curves of the number of 

fibers activated vs. energy consumed were constructed. 

Amplitudes were adjusted by scaling the entire waveform. 

For each I/O curve, the energy required to activate 50% of 

the entire population was calculated, and the means and 

standard errors of these values across the 10 axon 

populations were computed. I/O curves were also generated 

for the same populations using square, increasing/decreasing 

ramp, increasing/decreasing exponential, and sinusoid 

waveforms, and the energy efficiencies of these waveforms 

and the GA waveforms were compared. 

III. RESULTS 

A. Genetic Optimization of Stimulus Waveform 

By the end of each trial, the GA had converged upon a 

highly energy-efficient waveform shape. The generation 

energy was within 1% of the final generation energy by 

5000 generations for PW ≤ 0.5 ms and by 9000 generations 

for PW = 1 and 2 ms. For each PW, the GA waveforms were 

very similar across trials, and across PWs the shapes of the 

GA waveforms were also quite similar (Fig. 1). For PW ≤ 

0.2 ms, the shapes of these waveforms resembled truncated 

normal curves or sinusoids, with the peak near the middle of 

the pulse. For PW ≥ 0.5 ms, the shapes of the GA 

 
Fig. 1.  Energy-optimal stimulation waveforms determined with a 

genetic algorithm for different PWs: 0.02, 0.05, 0.1, 0.2, and 0.5 ms 

(a-e, respectively). f) Waveforms for PW = 1 and 2 ms combined.  For 

PW ≥ 0.5 ms, the peaks of the waveforms were aligned and 

leading/trailing tails of low amplitude were excluded for plotting. 

Curves within the gray regions represent the means of the resulting 

waveforms across 5 trials, and the upper and lower curves define 95% 

confidence intervals. 
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waveforms also resembled truncated normal curves or 

sinusoids but with leading and/or trailing tails of negligible 

amplitude. As PW increased, the smoothness of the GA 

waveforms decreased. 

Compared to commonly-used waveforms in neural 

stimulation, the GA waveforms were more energy-efficient 

for all PWs. The energy-duration curve of the GA 

waveforms was concave up (Fig. 2a), and the minimum 

energy of this curve was less than the minimum energies for 

the other waveform shapes. For PW ≤ 0.2 ms, the GA 

waveforms were slightly more energy-efficient (<15%) than 

the other waveform shapes (Fig. 2b). Of these other shapes, 

the shape that most resembled the GA waveforms—the 

sinusoid—was the most energy-efficient. Between PW = 0.2 

ms and  0.5 ms, the differences in energy-efficiency between 

GA waveforms and the other shapes increased considerably 

for all shapes, and the differences increased further with PW 

for all but the exponential waveforms. 

Results of the GA were mostly insensitive to variations in 

the algorithm parameters. Neither doubling nor halving the 

number of waveforms in each generation or waveforms that 

survived to the next generation had substantial effects on the 

shape of the GA waveforms or their energy efficiencies (< 

0.1% difference). As well, the amplitudes of the waveforms 

in the initial generation were scaled between 0.4 – 1.6 times 

the original amplitudes. Scaling factors < 0.6 resulted in 

initial waveforms that were all below threshold, and the GA 

did not produce an energy-efficient waveform. However, 

scaling factors > 0.8 had little effect on the shape and energy 

efficiency (<0.1% difference) of the GA waveforms. 

Further, the variance of the normal distribution used in 

mutations was varied between 0 – 4 times the original 

variance. With variance = 0 (no mutations), the GA quickly 

converged on an energy-inefficient waveform. For all other 

variances, the GA resulted in approximately the same shape 

and energy efficiency (<0.4% difference) of the GA 

waveform. One factor that had a substantial effect on energy 

efficiency—but not the overall shape of the GA waveform—

was the time step, dt. Smaller values of dt resulted in more 

energy-efficient GA waveforms for PW ≤ 0.5 ms, as a result 

of finer resolution of waveform shape; and less energy-

efficient GA waveforms for PW ≥ 1 ms, due to the increased 

difficulty of generating smooth waveforms. 

B. Population Model 

As in the single axon model, the GA waveforms were 

more energy-efficient than the commonly-used waveform 

shapes in the population model. The most energy-efficient 

GA waveform for each PW was used in the population 

model. The resulting energy-duration curve of the GA 

waveforms was concave up with the minimum at PW = 0.5 

ms (Fig. 3a). The GA waveforms were more energy-

efficient than the commonly-used waveform shapes for all 

PWs, and differences in energy efficiency were 

approximately equal to the differences in the single axon 

model with a few exceptions (Fig. 3b). These results 

demonstrated that the superior energy efficiency of the GA 

waveforms compared to the other waveform shapes was 

independent of the position of the electrode with respect to 

the axon. 

IV. DISCUSSION 

A genetic algorithm was used to seek the energy-optimal 

waveform shape for neural stimulation. In an optimization 

problem where analytical methods were impossible and 

brute force methods were impractical, the GA succeeded in 

revealing highly energy-efficient waveforms. The resulting 

waveforms of the GA resembled truncated normal 

distributions or sinusoids and were more energy-efficient 

than waveforms commonly used in neural stimulation. For 

short PWs, improvements in energy efficiency were small, 

but for long PWs, improvements were more substantial. 

With more energy-efficient waveforms, the lifetime of 

implantable stimulators could be extended, which would 

reduce the risks and costs of battery-replacement surgeries. 

For many optimization problems, including the present 

problem, it is impossible to prove that a solution is globally 

optimal. However, the results of this study provide strong 

evidence that the GA waveforms are the most energy-

efficient shapes. For all trials, the generation energy was 

within 1% of the final generation energy for >1000 

generations, indicating that each trial had converged upon at 

least a locally-optimal solution. As well, for each PW, all 5 

 
Fig. 2.  Energy efficiency of the GA waveforms in single axon model.  

a) Energy-duration curves for GA waveforms (mean, n=5; SE was 

negligible) and square waveform.  b) Energy efficiency of GA 

waveforms compared to waveform shapes commonly used in neural 

stimulation. 
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independent trials of the GA converged to approximately the 

same shape (Fig. 1) and the same energy efficiency (Fig. 

2a). Across PWs, all GA waveforms resembled normal 

curves or sinusoids that were truncated at different points. 

Finally, variations in the parameters of the GA either had 

negligible effects on the solutions or resulted in less energy-

efficient waveforms. Although these findings do not 

constitute a proof of the GA waveforms being globally 

optimal, they do suggest that the GA waveforms were more 

than just locally optimal. 

Although the GA was mostly effective, a minor 

shortcoming was the lack of smoothness of the resulting 

waveforms. The GA waveforms were often jagged, leading 

to slight reductions in energy efficiency. The waveforms 

would likely have become smoother and more energy- 

efficient if the GA had run for a greater number of 

generations. The lack of smoothness was especially a 

problem for GA waveforms with long PWs on the leading 

and trailing tails with low amplitude. All GA waveforms 

with PW = 1 and 2 ms were still able to elicit an action 

potential when the tails were removed, indicating that the 

tails were superfluous (data not shown). However, the GA 

prevented the amplitude from reaching 0. The lack of 

smoothness of the GA waveforms with long PWs led to the 

energy-duration curve being concave up (Fig. 2a). 

Theoretically, as PW increased, the energy should have 

either continued to decrease or plateaued because any GA 

waveform generated at a given PW could be generated with 

a longer PW. Despite the lack of smoothness of the GA 

waveforms, the GA still revealed highly energy-efficient 

waveform shapes. 

Several issues should be considered before the GA 

waveforms are implemented. As calculated in this study, the 

energy efficiency did not take into account the energy 

consumed by the electronic circuitry that would be required 

to generate the GA waveforms. When this circuitry is 

considered, the GA waveforms may not be energy-optimal. 

Another consideration is the charge efficiency of the GA 

waveforms. The charge and charge density delivered during 

a stimulus pulse are cofactors in tissue damage [8, 9] and 

electrode corrosion. If the GA waveforms required excessive 

charge, then they would not be clinically useful, no matter 

how energy-efficient they were. A third consideration is 

whether the GA waveforms would still be energy-efficient 

when delivered as one phase of a biphasic pulse. Clinically, 

neural stimulation is most often delivered as biphasic pulses. 

The charge recovery pulse can affect the threshold of the 

primary pulse, and it is unclear if changes in threshold are 

dependent on the waveform shape of the primary pulse. The 

GA could be run again with biphasic pulses to determine if 

the GA produces the same resulting waveforms. 

ACKNOWLEDGMENT 

The authors would like to thank Xiaobai Sun, Michael 

Wang, John Pormann, and Merrill Birdno for useful 

technical discussion and support. 

REFERENCES 

[1] J. T. Mortimer, C. N. Shealy, and C. Wheeler, "Experimental 

nondestructive electrical stimulation of the brain and spinal cord," J 

Neurosurg, vol. 32, pp. 553-9, May 1970. 

[2] P. E. Crago, P. H. Peckham, J. T. Mortimer, and J. P. Van der Meulen, 

"The choice of pulse duration for chronic electrical stimulation via 

surface, nerve, and intramuscular electrodes," Ann Biomed Eng, vol. 

2, pp. 252-64, Sep 1974. 

[3] N. A. Dimitrova and G. V. Dimitrov, "Effect of stimulus (postsynaptic 

current) shape on fibre excitation," Gen Physiol Biophys, vol. 11, pp. 

69-83, Feb 1992. 

[4] M. Sahin and Y. Tie, "Non-rectangular waveforms for neural 

stimulation with practical electrodes." vol. 4, 2007, p. 227. 

[5] M. W. Kroll, "A minimal model of the monophasic defibrillation 

pulse," Pacing Clin Electrophysiol, vol. 16, pp. 769-77, Apr 1993. 

[6] M. L. Hines and N. T. Carnevale, "The NEURON simulation 

environment," Neural Comput, vol. 9, pp. 1179-209, Aug 15 1997. 

[7] C. C. McIntyre, A. G. Richardson, and W. M. Grill, "Modeling the 

excitability of mammalian nerve fibers: influence of afterpotentials on 

the recovery cycle," J Neurophysiol, vol. 87, pp. 995-1006, Feb 2002. 

[8] T. G. Yuen, W. F. Agnew, L. A. Bullara, S. Jacques, and D. B. 

McCreery, "Histological evaluation of neural damage from electrical 

stimulation: considerations for the selection of parameters for clinical 

application," Neurosurgery, vol. 9, pp. 292-9, Sep 1981. 

[9] D. B. McCreery, W. F. Agnew, T. G. Yuen, and L. Bullara, "Charge 

density and charge per phase as cofactors in neural injury induced by 

electrical stimulation," IEEE Trans Biomed Eng, vol. 37, pp. 996-

1001, Oct 1990. 

 
Fig. 3.  Energy efficiency of GA waveforms in population model.  a) 

Energy-duration curves for activation of 50% of axons in randomly-

selected populations (mean +/- SE; n=10).  b) Energy efficiency of 

GA waveforms compared to waveform shapes commonly used in 

neural stimulation (mean, n=10; SE was negligible). 
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