
  

  

Abstract—  Silicon neurons are of importance both to 
implement hybrid electronic-biological system as well as to 
develop fundamental understanding of the neurobiological 
systems they emulate.  We have implemented a hardware 
version of the quadratic integrate and fire neural model.  The 
quadratic integrate and fire neuron differs from the more 
common integrate and fire neuron in that the model, and thus 
the hardware, intrinsically generate spikes.  Readily available 
discrete surface mount components are used to make the 
hardware available to a wider audience and facilitate 
experimentation. 

I. INTRODUCTION 

 
MPLEMENTATION of neuronal networks in silico can 
facilitate understanding of biological systems and result in 

hardware systems with similar performance to biological 
systems.  An excellent review covering implementation of 
neural models in silico is presented in [1]. Software systems, 
while flexible and accurate, are often too slow to interface 
directly with neural tissue or to operate on experimentally 
collected data in real time.  Physical circuit implementation 
has several advantages.  First, circuits that are designed to 
perform specific operations typically operate much faster 
than general purpose hardware.  One approach to developing 
specialized hardware is to develop computational models 
that are more easily implemented in hardware.  Indeed, this 
was the motivation for the development of the Fitzhugh-
Nagomo model [2], i.e. the simplification of the Hodgkin-
Huxley active membrane equations allowed implementation 
of neural spiking behavior in analog circuitry as specialized 
type of analog computer.   

Determining if a neural model is biologically relevant 
presents a significant challenge [3, 4].  One approach to 
verification is direct interface of the neural model to 
biological neural systems.  The direct interface to simple 
biological systems has met with some success.  In [5], the 
authors interfaced a multiconductance hardware neural 
model directly to a leech heart neuron via an 
electrophysiological instrumentation interface.  Direct 
interface of hardware to neural tissue can also provide a 
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Fig 1.  Components of a hardware-biological hybrid system.  The point 
source neural model (shown in grey) is the focus of this work.  

 
means to advance prosthetics technology.  In [6], the authors 
employ a VLSI (Very Large Scale Integration) integrate and 
fire (IF) in silico neural network to demonstrate the use of 
dexterous hand movement in simulation. 

Thus, the second advantage of hardware implementation 
is that hardware may be more easily interfaced to biological 
tissue under study.  If specialized hardware-biological 
hybrid systems are to be realized several conditions must be 
met.  The hardware model must have internal dynamics 
matching those of a biological neuron i.e. operate on the 
same time basis as the biological system, the hardware 
model must receive input from the neuron, the hardware 
model must deliver biologically relevant signals and the 
hardware model must allow for real time tuning to match 
biological parameters during experimentation.  A reduced 
set of parameters would also facilitate implementation ease 
the collection of experimental data.  A general overview of 
such a system is shown in Fig 1.   

The third advantage of physical circuit implementations is 
that it enables integration into a robotics system.  Robotic 
systems are an ideal complement to simulation in that 
complex physical laws need not be simulated and modeling 
may be verified through observing the operation of the 
robot.  Point source neural models implemented in central 
pattern generators (CPGs) are of particular interest in 
robotics, for review see [7]. 

Neural Hardware models fall into roughly three 
categories.  Conductance models are based upon biophysical 
properties of the membrane [8-11].  Modeling relies on a 
biophysical explanation of the neuron.  Typical challenges 
associated with these implementations are the complexity of 
parameter tuning, circuit complexity and lack of a biological 
time base. 

Integrate and Fire (IF) and Leaky Integrate and Fire (LIF) 
models have been referenced in the literature in principle 
since 1907 [12].  A recent review integrate and fire neurons 
is provided in [13].  These linear models do not produce true 
spiking behavior.   
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Even upon inclusion of a threshold assigned spike 
mechanism they do not display behavior observed during 
electrophysiological experimentation such as spiking 
latencies, activity dependant threshold or tonic spiking 
modes [14].  The LIF models are prevalent in the literature 
due to the ease of computational modeling. 

In the third general group, are mathematical models 
derived based upon bifurcation analysis.  Of these, the 
quadratic integrate and fire model (QIF) is the simplest 
model capable of producing true spiking behavior [15].  The 
QIF demonstrates true Class I and Class II behavior.  The 
QIF is also interesting in that it serves as the basis for 
incrementally more complex models, which show an 
improved fit to observed neural behavior [4, 16] including 
the exponential model [17].  The exponential model is of 
particular interest in this application as dynamic I-V curves 
were used to extract parameter data from 
electrophysiological experiments [18].  However, the 
exponential form is not analytically solvable as is the QIF 
form [15]. 

II. METHODS 

A. The quadratic integrate and fire model 
The quadratic integrate and fire follows from a reduced 

form 
 

IVF
dt
dV

+= )(  (1) 

 
where F(V) is a voltage dependant function which aims to 
capture the voltage dependant current flow in active 
membranes.  I is the applied current and dV/dt is the time 
varying membrane voltage.  Substituting V2 for F(V) leads 
to the one dimensional system 

 

IV
dt
dV

+= 2  (2) 

 
which is the topological normal form for saddle node 
bifurcation.  A reset condition is required else the solution 
would increase to infinity, thus  

 
If V ¥ VPeak, then V => VReset (3) 

 
If the graph of F(V) vs. V is above the y axis, there is one 

stable equilibrium point and tonic spiking results.  If F(V) is 
below the y axis, then two stable equilibrium points are 
present.  Bistability results when Vreset is above zero and 
intermittent spiking occurs as applied current is integrated 
until a spike occurs and the system is reset to the initial 
equilibrium point.  This classification scheme provides a 
convenient method to evaluate both biological experimental 
data and hardware performance.  

Class I neurons as defined by Hodgkin as those where the 
firing frequency response to injected current is linear from 
an arbitrarily low frequency.  Class II neurons are those 
which encompasses all behavior that leads to a 
discontinuous firing frequency to injected current curve.  In 
comparison to Class I neurons, spiking stops at some 
arbitrary low frequency.  

A more convenient representation is used in [15] where 
dynamical systems are defined as either integrators or 
resonators and also either bistable or monostable leading to 
four classifications.  Understanding the proper classification 
of neural dynamical systems is important to properly model 
computational properties and properly design testing 
sequences of systems under development. 

B. Implementation of circuits from the quadratic integrate 
and fire equation 

Discrete and integrated versions of integrate and fire 
neurons are common in the literature. However, these 
implementations typically require a mechanism to generate 
spikes.  Implementations of quadratic integrate and fire 
neurons are less common.  To our knowledge, there are no 
discrete implementations of the QIF reported in the 
literature. 

Before the advent of high speed digital computers, it was 
common to solve differential equations in general purpose 
analog hardware.  The techniques for implementation of 
differential equations in analog computers are well laid out 
in [19].  Excellent historical perspectives on analog 
computation may be found in [20, 21].   

 Our approach differs in that a switch with hysteresis 
was used in conjunction with a noninverting switched 
integrator [22] to implement the reset function defined in (3) 
and allow the integrator node to completely discharge.  
Without this hysteretic behavior aberrant spike shapes may 
be observed during large amplitude input stimulation.  

 

 
 
Fig. 2.  Circuit schematic of the analog QIF.  The measured output is 
buffered by the LT1630 shown as “output x”.  The switch encapsulates 
hysteretic behavior.  The details of the hysteretic switch are shown in Fig. 3. 
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Fig. 3.  Circuit Schematic for the hysteretic switch. R1 is 130kΩ, R2 is 
1MΩ, Vref can be varied to alter the excitability of the circuit and the 
resting voltage and R3 is 1kΩ.  The switch is a discrete nFET 2N7000. 
 

An Analog Devices AD633 discrete multiplier chip is 
used to provide the quadratic behavior.  The AD633 is low 
cost and also supports single rail operation.  Further 
simplification may be possible with the AD835.  The 
AD835 multiplies without attenuation and has a simplified 
transfer function.  However, because it has a 5V supply 
maximum it may not be appropriate for driving a stimulator 
directly due to compliance limitations common in neural 
stimulation systems.  The switch was implemented using a 
2N7000 discrete transistor as shown in Fig. 3.  A 
noninverting hysteretic comparator implemented with the 
second LT1630 drives the switch. 

C. Evaluation of circuit performance 
The quadratic integrate and fire model (2) is reformulated 

as 
 

bVV
dt
dRC += 2  (4) 

 
where R is the resistance of the integrator, and C is the 
capacitance of the integrator.  Assuming that the RC product 
is greater than any parasitic resistances (switch) or 
capacitances (op amp input capacitance) (4) can be used to 
determine the period of spiking for the quadratic integrate 
and fire circuit for a dc value of b.  Given that (4) is a first 
degree nonlinear differential equation it can be solved by 
separation of variables 

 

dtdV
bV

RCRC =
+2  (5) 

 
The left side of (5) can be integrated and is found to be 

equal to an inverse tangent function (6).  The integration of 
dt is simply time.  All integration constants are assumed to 
be equal to zero as the capacitance storing the integrated 
value is reset for each spike. The imaginary number j is used 
(j=◊-1). 

 

b
V

b
RCdV

bjV
dV

bjVbj
RC 1tan11
2

−=
+
−

+
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The voltage as a function of time is then given as 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= t

RC
bbV tan  (7) 

 
Subject to the reset condition 

 
If V ¥ VTrip High , then V => VTrip Low   (8) 

 
where VTrip High is the voltage at which the switch discharges 
the charge of the integrating capacitance, and VTrip Low  is the 
voltage at which the integrating capacitance is allowed to 
start integrating.   

Equation 8 can be used to solve for the time it takes for 
the signal to rise from one voltage to another for a given dc 
value of b. Assuming that the rise time of the signal is much 
greater than the fall time (this is easily accomplished by 
setting the integrator resistance R to be much greater than 
the internal resistance of the discharge switch), the period of 
the spike is given by (9). 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=≅ −−

b
V

b
V

b
RCTPeriod TripLowTripHigh

Rise
11 tantan  (9) 

 

III. RESULTS 
Spiking behavior of the neuron circuit is shown in Fig 4 

and Fig. 5.   

 
Fig 4.  Spiking response to pulsed input (shown in blue) ramp input (shown 
in red) and accumulation (last spike to the right of graph with no input).  
This demonstrates the system operates as an integrator with a single stable 
equilibrium. 

 
 
Fig 5.  Demonstration of bistability.  System bistability occurs when the 
reset value is above the second stable equilibrium. 
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Fig 6.  Tonic spiking response of implemented circuit.  Tonic spiking at a 
fixed frequency is typical behavior of a class I excitable system. 
 

 
Fig 7.  Spiking frequency as a function of input.  A nearly linear 
relationship between frequency and injected current demonstrates this 
circuit is operating as a class I excitable system. 

 
Circuit testing focused on Class I behavior because, as 

mentioned earlier, there is only one set of conditions that 
lead to Class I behavior.  Testing is accomplished by varying 
the input current and the Vreset value.  Observing Class I 
behavior (Fig. 6 and 7) proved to be more challenging that 
observing class II behavior (Fig 4 and Fig. 5) in a circuit that 
demonstrates both Class I and Class II behavior.   

IV. CONCLUSION 
We have presented a mathematically based hardware 

neural implementation that displays behavior consistent with 
excitable membranes.  A discrete circuit implementation 
makes this available to experimentalist in robotics, 
neuroscience and control systems research.  The circuit was 
designed using single rail capable components and circuit 
topologies to allow single supply operation.  Single supply 
operation is easily obtained by tying all –Vss terminals to 
ground.  Further improvements are possible by using the 
outlined approach to reducing component count and 
improve circuit performance. 
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