
  

  

Abstract— In this paper the methodology of designing a 
genomic-based point-of-care diagnostic system composed of a 
microfluidic Lab-On-Chip, algorithms for microarray image 
information extraction and knowledge modeling of clinico-
genomic patient data is presented. The data are processed by 
genome wide association studies for two complex diseases: 
rheumatoid arthritis and multiple sclerosis. Respecting current 
technological limitations of autonomous molecular-based Lab-
On-Chip systems the approach proposed in this work aims to 
enhance the diagnostic accuracy of the miniaturized LOC 
system. By providing a decision support system based on the 
data mining technologies, a robust portable integrated point-of-
care diagnostic assay will be implemented. Initially, the gene 
discovery process is described followed by the detection of the 
most informative SNPs associated with the diseases. The clinical 
data and the selected associated SNPs are modeled using data 
mining techniques to allow the knowledge modeling framework 
to provide the diagnosis for new patients performing the point-
of-care examination. The microfluidic LOC device supplies the 
diagnostic component of the platform with a set of SNPs 
associated with the diseases and the ruled-based decision 
support system combines this genomic information with the 
clinical data of the patient to outcome the final diagnostic result.  

I. INTRODUCTION 
HE evolution of point-of-care diagnostics during the 
21st century is going to be motivated by the 
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advancements of information and communication 
technologies, microfluidics, microelectronics and genome 
wide association studies. Being composed of miniaturized 
devices, the point-of-care diagnostics of the next generation 
will focus on the early prognosis and diagnosis of many 
complex diseases. Portable devices capable to monitor the 
blood glucose concentration are known since 1970s [1]. In 
the 90s in-vitro point-of-care (POC) devices were born with 
main characteristic the usage at the bedside of a patient [2]. 
During the last years POC molecular diagnostic systems are 
implemented, targeting areas of genetic testing, 
pharmacogenomics and infectious diseases [3]. Nowadays, 
there are challenges which should be faced towards the 
development of molecular-based POC platforms although the 
need of such miniaturized Lab-On-Chip (LOC) systems is 
considered the most suitable and appropriate technology for 
portable POC systems [4]. According to a recent study [5] 
the micro-meters technology of the LOC systems followed 
by the advancement of nano-technology and 
microelectronics aims to bridge the gaps for the future 
diagnostic POC systems.  

Modern point-of-care diagnostic systems will be 
supported by artificial intelligent algorithms in order to 
provide more accurate and efficient diagnostic results at the 
bedside of the patient. These portable systems are going to 
make exhaustive usage of “smart” algorithms in order to 
enhance the point-of-care diagnosis through the automated 
application of decision support processes; such combined 
diagnostic assays will assist the primary care community to 
administer the patient symptoms at any point of need. 
Decision support process is a crucial component of POC 
systems since they can assist novice practitioners and nurses 
in their diagnostic and clinical judgment [6]. Although there 
are limitations for the development of autonomous genomic-
based POC systems, the information and communication 
technological achievements of the last years can efficiently 
provide reliable diagnostic results at the POC; it is required 
the integration of current LOC technologies with decision 
support systems operated by handheld or portable devices.  

In this paper the methodology for the implementation of a 
genomic-based LOC system aiming at the early prognosis 
and diagnosis of the Rheumatoid Arthritis (RA) and Multiple 
Sclerosis (MS) diseases at the POC is presented. In parallel 
with the microfludic LOC sensors the integrated system is 
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also composed of genomic information extraction, disease-
gene association, genotypic and phenotypic knowledge 
modeling which are the main aspects discussed in this work.  

II. METHODOLOGY OF SYSTEM DESIGN 
The key components of the methodology, which are 

presented in the forthcoming sections, are: (a) the gene 
discovery and association, (b) the algorithms for information 
extraction, (c) the modeling of the knowledge and (d) the 
fabrication and realization of the microfludic LOC device to 
analyze the genomic material at the POC. The hardware and 
software platform which will combine the aforementioned 
components will provide the portable point-of-care RA and 
MS diagnostic assay.  

A. Gene Discovery and Gene Association  
During the discovery phase, a Whole Genome Association 

Study on cases (patients with the disease) and controls 
(patients without the diseases) to identify HLA (Human 
Leukocyte Antigens) system and other potentially relevant 
susceptibility genes, related to the RA and MS diseases is 
performed. The discovery phase of RA applied to a 
homogeneous North-European population (with 800 cases 
and a similar number of controls). The discovery followed by 
a confirmatory phase, where the “best” SNPs (Single 
Nucleotide Polymorphisms) are evaluated in a second 
independent and much larger sample (2000 cases affected by 
RA or MS respectively and a similar number of controls), 
from three separate cohorts representing Northern, Central 
and Southern European Populations.  

The discovery genotyping phase for RA, using Illumina 
HumanCNV-370 (Illumina, San Diego, USA), is concluded 
[6]. Plink [7] is used for Quality Control (QC) of genotyping 
data, single marker association analysis and correction using 
permutations. Although the analysis is ongoing, the first 
results exhibit a strong positive association with the HLA 
region of chromosome 6. Initial findings pointed also to 
several other susceptibility genes across the genome and 
potentially involved in the susceptibility to the disorder other 
than confirming the role of HLA. Along with the genetic 
material (i.e. DNA), clinical data are collected from cases 
allowing the development of the knowledge modeling 
component of the POC system. The “best” SNPs that will 
result from the discovery and confirmatory phases will be 
used as genomic diagnostic markers in the miniaturized LOC 
device, thus representing an essential component of the 
diagnostic system.  

B. Algorithms for Information Extraction  
The data produced by the gene discovery phase are 

analyzed in order to provide information which can be used 
to relate the genomic characteristics (SNPs) of the disease 
with the phenotypic data of a patient, performing the point-
of-care diagnostic test. More specifically, the input of this 
part of the system is the microarray images generated by the 

scanning of the Illumina Beadchips [8]. The process 
produces numerical data as measurements of the 
hybridization of the SNPs. An automated software 
component has been developed to automatically perform the 
following microarray image analysis procedures: Spot 
Addressing/Gridding, Segmentation and intensity extraction.  

Spot addressing and gridding is a procedure where each 
individual microarray spot of the image must be isolated and 
our interest is concentrated on an automated procedure 
which is applied to all the produced images. The main 
characteristic of the generated image is the hexagonal grid 
[9] where the spots of the image are located. Our approach 
consists of four automated steps of block finding, hybridized 
spot detection, non-hybridized spot detection and gridding.  

The block finding algorithm is based on a holistic 
approach where the elements of each row and column of the 
image are summed resulting in the projections of the image 
in the vertical and the horizontal direction. These projections 
of the image are processed in order to detect the points of the 
image that separate the blocks. For this reason, a median 
filtering is employed and then the gradient of the image is 
extracted. The split points maximize the differences of the 
gradient. As a result, the image is split into a number of sub-
images which contain each separated block. Each block of 

the image is processed separately. Figure 1 shows the 
vertical projection and its gradient of an Illumina microarray 
image which contains four blocks. 

The hybridized spot finding algorithm detects all the 
objects of each block. This procedure converts the image to a 
binary one using the Otsu method [10] and then the centre of 
the mass is estimated for each 8-connected object in the 
block.  

To find the positions of the “empty” spots (i.e. the non-
hybridized spots) an new algorithm is used. The algorithm of 
Growing Concentric Hexagon (GCH) start from an already 
detected spot of the image and a hexagon is grown around it, 
estimating the position of each empty spot on its contour. 
The steps of the algorithm are: 

1. Select randomly a spot of the image 
2. Grow the hexagonal region around this spot until a 

neighbour spot is found 
3. Compute the mean distance between the detected 

neighbouring spots and the central spot 
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Fig. 1.  a) The vertical projection of the image, b) the gradient of the 
vertical image projection. 
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4. Generate a hexagon with a radius equal to the above 
distance. Six spots are allocated on the angles of the 
hexagon, and a number of spots on the edges according to 
the below formula: 

( )# 6 _ _ 1 6of spots index of hex= × − + ,  (1) 
where index_of_hex defines the level of the hexagon around 
the centre spot. 

5. Examine the generated spots of the image. If there is 
already a hybridized spot in the 3x3 neighbourhood of 
pixels, the generated spot is eliminated and the real 
hybridized spot remains.  

Once the position of all the spots of the image is 
estimated, a Voronoi diagram [11] is employed. As a result, 
each Voronoi cell contains only one spot.  

To segment each Voronoi cell, the K-means algorithm 
[12] is applied for each pixel. Thus, the signal and the 
background pixel in the area are separated. A set of features 
is used to feed the Clustering algorithm [13]. The 
background-corrected values for each spot of the image are 
computed for both the green and the red channel and the 
ratio of the hybridization for the two samples is calculated.  

C. Modeling of the Knowledge  
A key component of the point-of-care diagnostic system 

concerns the modeling of the knowledge coming from 
clinico-genomic patient data. These data were collected 
during the genome wide association studies from RA and MS 
cases and controls. The purpose of this step is two-fold: a) to 
extract new and potentially useful knowledge and b) provide 
prediction methods for the diagnosis as well as the detection 
of susceptibility for MS and RA diseases. In order to extract 
new and potentially useful knowledge, cluster analysis [14] 
and association rule mining techniques [15] are applied to 
the collected datasets. In order to create predictive models 
for the diagnosis and the detection of susceptibility of the RA 
& MS diseases, classification techniques [16] are applied.  

The architecture for the modelling of knowledge of the 
system is shown in Fig 2. Starting from collected and 
analyzed clinico-genomic data, an important part of the 
architecture concerns the informative feature selection 
process. The selection of the most informative clinical 
features and SNPs is based on mathematic measures like the 
correlation of the features with the target outcome as well as 
the consistency of the informative set of features with the 
target outcome. Feature selection is used: (a) before 
clustering in order to keep only the important features for 
developing useful profiles, (b) before association rule mining 
in order to restrict the rules only to those that have as 
antecedent of consequent the informative features and (c) 
before the classification, in order to build more accurate and 
less complicated prediction models for MS and RA.  

Cluster analysis is an unsupervised procedure, meaning 
that the outcome (e.g. MS or RA, or normal) is not used as 
input in the clustering procedure. During the clustering 
procedure, records of patients which are close in terms of a 

Euclidian distance are grouped together into the same 
cluster. Algorithms for this task include the k-means 
algorithm, the EM algorithm and the fuzzy c-means 
algorithm. The identified profiles are stored in the 
knowledge repository. Association rule mining aims at 
discovering hidden knowledge within the data in the form of 
rules. The evaluation of rules is performed using the support 
confidence framework and only rules with high support and 
confidence are considered by the experts for storing them in 
the knowledge repository. For the extraction of rules, the 
well known a-priori and FP-growth algorithms are employed 
[17].  

Classification is one of the most important functionalities 
of the knowledge modeling framework, since the 
development of classification models, will constitute the 
prediction models for MS and RA. These models will be 
finally used to provide predictions for new patients 
performing an examination at the point-of-care. Extensive 
testing is performed in order to identify algorithms with high 
prediction accuracy. Our preliminary studies show that a 
combination of algorithms (Artificial Neural Networks, 
Decision Trees and Support Vector Machines) that produces 
highly accurate results accompanied with interpretation of 
the decisions is the best for the needs of the diagnostic point-
of-care platform. 

D. Fabrication of the microfluidic LOC device  
In the literature, several works have been devoted to the 

realisation of integrated LOC devices for DNA analysis. A 
recent review on the topic [18] shows the state of the art with 

 
 
Fig. 2.  The architecture of knowledge modeling component. 
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respect to commercial or semi-commercial systems for point 
of care diagnosis.  

The first part, namely the microfluidic module, includes 
the microfluidic channels for sample injection, reaction 
chamber for PCR amplification and the detector chamber, as 
well as the integrated microheaters and thermometers for the 
control of temperature in different parts of the chip. The 
LOC reader is required to feed the microfluidic module with 
sample, reagents, power supply and control signals for the 
management of the fluidic components and microheaters. 
The second part of the LOC chip will be the detector 
module, based on an array of piezoresistive microcantilevers 
[19,20]. The detector arrays are implemented using 
technology based on Silicon-On-Insulator (SOI) wafer in 
order to provide the required low thickness (340nm, single 
crystal Silicon). Readout is based on implanted 
piezoresistors. The micro cantilever is functionalized using 
DNA probes relevant for the detection of MS and RA. The 
number of cantilevers is chosen on the basis of the 
technological limitation related to the realization of the 
devices, and on the basis of the number of SNPs to be 
detected, according to the results of probe selection from the 
genome wide association studies. It is likely that a replication 
of each probe on multiple cantilevers is required to increase 
the statistical significance of results, with a factor depending 
on experimental results. Different steps of realization and 
testing are expected. In the first step, in order to test the 
detector functionality, detector arrays with a small number of 
elements (3 x 3 arrays) is tested, while in the second step 
devices with up to sixty sensors are used to investigate the 
possibility to realize devices with higher density.  The LOC 
reader provides the bias of sensors and the readout of the 
analog signals (differential potential on Wheatstone bridges) 
coming from the sensors.  

III. CONCLUSIONS 
It is expected that the methodology presented in this work 

allows efficient genomic point-of-care diagnostics to be 
applied at the bedside of the patient for the early prognosis 
and diagnosis of the RA and MS complex disorders. Early 
results by combining clinical and genomic data through 
artificial intelligent algorithms showed that higher predictive 
accuracy can be achieved. Considering that the limitations of 
autonomous molecular-based LOC diagnostic devices - due 
to the relative small number of SNPs that they can host - can 
be overcome in the near future, the application of “smart” 
algorithms and data mining processes will always suggest 
better prognostic and diagnostic added-value at the point-of-
care.  
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