
  

  

Abstract—Optical characterization of biological tissues 

provides advantages like the non-invasive or non-contact 

characters, or an increased image resolution. The use of the 

polarization information, apart from the intensity, leads to new 

data for a better diagnosis. In this work, we use the Group 

Theory applied to polarimetry to analyse the polarization 

behaviour of samples. The SU(4)-O+(6) homomorphism allows 

us to obtain the Mueller Coherency matrix from the Mueller 

matrix, and applying the target decomposition theorem, which 

provides information on tissue structure and separates different 

polarization effects by means mainly of the eigenvalues and 

eigenvectors, tissue imaging contrast can be increased. The 

analysis is applied to glucose suspensions of polystyrene spheres 

of different concentrations, whose behaviour can be modelled 

by means of single or multiple scattering depending on the 

concentration, either in the Rayleigh or Mie regimes. The 

results could be applied to cell cultures, where cancerous cells 

grow without control, or even to some anemia pathologies, 

where the number of erythrocytes in blood decreases. 

I. INTRODUCTION 

PTICAL techniques in characterization of biological 

tissues present advantages like being harmless, non-

invasive, without contact and with a very good resolution 

[1]. Optical characterization of tissues is usually related with 

intensity measurements, that allows the achievement of 

partial optical information from tissues. The fact that most 

tissues have intrinsic and/or structural anisotropy, makes that 

polarization parameters can add important information to the 

images acquired, in such a way that hidden compounds or 

structures, significant from the point of view of diagnosis, 

may appear. Furthermore, scattering from tissues, that can 

also be anisotropic, changes the degree of polarization of 

light and this is reflected in polarization parameters [2]. For 

instance, blood or adipose tissues present no significant 

anisotropy but scattering due to the particles involved in 

their composition. On the other hand, collagen fibers like 
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tendons show anisotropy as a consequence of their structural 

orientation. Polarimetry is an optical technique focused on 

the measurement of polarization properties of samples 

including the properties of depolarizing optical media. 

Polarimetric techniques are specially appropriate for 

biological tissues, due to the fact that their properties show 

dependence with the polarization of light. They usually 

exhibit a depolarising behaviour. Methods of analysis that do 

not take into account tissue depolarisation, like Jones matrix, 

produce limited results. The extension of these 

characterization techniques to Mueller matrix measurement 

[3] adds data to the image obtained, but further information 

can be extracted. 

In this work, the Group Theory is applied to polarimetry 

in order to obtain more information of the polarization 

behaviour of biological tissues. By means of the SU(4)-

O+(6) homomorphism, a complex Mueller Coherency matrix 

can be extracted from the usual Mueller matrix [4]. The 

Mueller Coherency matrix analysis is applied to glucose 

suspensions of polystyrene spheres of different 

concentrations. These suspensions could simulate cell 

cultures, where healthy ones proliferate to some extent, 

whereas cancerous cells grow without control, or even some 

anemia pathologies, where the number of erythrocytes in 

blood decreases [5,6]. The concentration of the scatterers 

determines if the radiative process can be modelled by a 

simple or a multiple scattering approach [7]. The relative 

relation between the size of the scatterers and that of the 

applied wavelength shows if we are in the Rayleigh or the 

Mie regimes [8]. Depolarisation of radiation is strictly 

related with this multiple scattering process, and a 

relationship between their concentration and the degree of 

polarization can be established. 

Next section shows the theoretical model of single and 

multiple scattering, and also the implications in tissue 

depolarisation behaviour, depending on whether Rayleigh or 

Mie regimes apply. Afterwards the Mueller Coherency 

Matrix method is presented. In section 4 the experiment and 

Mueller matrices measurement of suspensions of different 

concentrations are exposed. Finally, the Mueller Coherency 

matrix analysis is applied and results are discussed. 
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II. POLARIZATION ANALYSIS OF SINGLE AND MULTIPLE 

SCATTERING DEVICES 

Scattering is produced by inhomogeneities in the sample, 

whose different refraction index makes radiation being 

deviated by a particular angle. The distribution of radiation 

depends mainly on the relationship between the scatterer size 

and the wavelength of the radiation [8]. According to this 

parameter, Rayleigh, Mie and geometrical regimes are 

applied. The density of scatterers has also its importance in 

the study, due to the mutual interaction of radiation coming 

from different particles. Under this point of view, there are 

mainly two approaches, single and multiple scattering [7]. In 

the first case, radiation is considered to be detected after only 

suffering one scattering event, and so only its state but not its 

degree of polarization is affected. With multiple scattering, 

however, the fact that radiation can undergo a great number 

of scattering events, and subsequent interaction among light 

coming from different particles after being scattered a 

random number of times, make that the electric field rotation 

randomizes and so not only the state but also the degree of 

polarization change. 

Our interest now is in the Mueller matrix resulting from 

spatially random media. If the scatterers size is minor than 

the radiation wavelength, then the Rayleigh approach 

applies, and taking into account that we are in a medium with 

specific symmetries, the Mueller matrix would have the 

following form [7]: 
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The expression of each one of the elements of Mueller 

matrix of equation 1 can be calculated from Belthe-Salpeter 

equation as a function of the number of scattering events 

n+1: 
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It is clear from the expressions that the output degree of 

polarization will be in general different from the input degree 

of polarization, and so the medium can depolarize the 

incident radiation as it was expected for multiple scattering. 

The degree of polarization goes down as the number of 

scatterers increases, as a consequence of the randomisation 

of the electric field rotation after combining radiation 

scattered a random number of times. 

III. MUELLER COHERENCY MATRIX METHOD  

There are techniques that take advantage of the Mueller 

matrix measurements [9], but the information obtained is 

limited because the direct interpretation of the Mueller 

matrix elements is difficult to relate with tissue structure or 

composition. Group Theory is a mathematical method widely 

applied to fields such as quantum mechanics [10]. Its use in 

polarimetry allows the extraction of useful information by 

means of different transformations, like homomorphisms, in 

which a relationship between complex and real sets is 

established [4]. One of the best known homomorphisms is 

the SU(2)-O+(3), that applied to polarimetry allows the 

calculation of the real Stokes vector from the complex 

Coherency matrix, and the useful mapping of this vector on 

the Poincaré sphere. It also decomposes the coherent 

scattering matrix or Jones matrix in a base of 2x2 matrices 

like Pauli matrices. The complex coefficients or Quaternions 

of this decomposition allow the construction of a complex 

target vector.  However, here we pay attention to the SU(4)-

O+(6) homomorphism, which has more to do with 

polarization devices rather than polarization radiation. By 

means of this mathematical transformation, the Mueller 

Coherency matrix is obtained from the Mueller matrix, and 

the decomposition of the former in a base of 4x4 matrices 

like Dirac matrices provides four target vectors, which 

further represent a scattering matrix, and four eigenvalues, 

which show the importance of each one in the general 

behaviour of the device [4]. 

The great potentiality of the Mueller Coherency matrix 

can be obtained from the eigenvalue analysis [11,12]. A 

maximum of four non-zero eigenvalues λi, with their 

corresponding eigenvectors or target vectors Ci, can be 

extracted from its decomposition: 

 

1 1 2 2 3 3 4 4λ λ λ λ= + + +4x4C C C C C  (4) 

  

The number of significant (non-zero) eigenvalues and 

their values are directly related to the depolarizing 

characteristics of the optical media. In polarization 

maintaining media, there is only one significant eigenvalue, 

and then a direct correspondence between the Jones and 

Mueller matrices can be established [7,13]. The target vector 

corresponding to the dominant eigenvalue can be 

transformed in a coherent scattering matrix or Jones matrix, 

and the polarization behaviour of the sample can be 

interpreted according to simple polarization devices, like 

polarizers or retarders. However, in depolarizing devices, 

there is more than one significant eigenvalue, and the 

information contained in the eigenvalues and eigenvectors 

coming from the Mueller Coherency matrix decomposition 

after applying the SU(4)-O+(6) homomorphism is much 

more complete, and can provide further information about 

tissue behaviour. Depolarizing characteristics, strongly 

related with tissue structure, and also behaviour paralelisms 
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with usual optical non-depolarizing devices can be deduced 

from this analysis, depending on the strength of the 

depolarizing characteristics of the sample. Further 

polarization parameters can be obtained, like the crosstalks 

or rotation angles, coming from the associated Jones matrix 

of this equivalent optical device [4,13]. 

IV. MUELLER COHERENCY MATRIX ANALYSIS OF VARYING 

CONCENTRATION SUSPENSIONS 

We will now apply these results to glucose suspensions of 

polystyrene spheres of different concentrations, as a way of 

showing how this method can provide additional information 

to the optical characterization. 

 

 
 

Fig. 1. Polarimeter configuration in transmission and reflection, where LP 

is a Linear Polarizer, and QW is a Quarter Wave Plate. 

 

A polarimeter composed by linear polarizers and quarter 

wave plates, with an He-Ne optical source (632.8 nm), was 

used to measure Mueller matrices of suspensions [14]. The 

configuration can be seen in Figure 1. 

 

 
The samples were composed by aqueous glucose 5M 

suspensions of polystyrene spheres with a mean diameter of 

2 µm, and a related anisotropy of scattering parameter of 

g=0.91, and they were kept in a 10 mm cuvette. The 

relationship between wavelength and scatterers size locates 

the process in the Mie regime, as discussed in previous 

section. Measurements of transmission and backscattering 

configurations were performed. In the former, the exact 

forward measurement direction was taken, while in the latter 

an angle of around 30º was kept to avoid direct Fresnel 

reflection. 

Table 1 shows the Mueller matrices measured for 

suspensions of different concentrations of scatterers and 

different measurements configurations, and also one of a 

linear retarder and a glucose suspension with no scatterers 

[14]. 

 
 

 
 

Fig. 2. Eigenvalues representation of samples corresponding to Mueller 

matrices M1 (a), and M4 (b), with its relative importance in dBs. 

 

With all these Mueller matrices, it is possible to apply the 

Group Theory SU(4)-O+(6) homomorphism, and to obtain 

the Mueller Coherency matrices. From them, and following 

the procedure detailed in section 3, the eigenvalues and 

target vectors can be calculated. Graphs for the eigenvalues 

relative significance for each case are showed in Figure 2. 

V. DISCUSSION 

First of all, let’s have a look at the case with the linear 

retarder and the glucose suspension with no scatterers, whose 

eigenvalues appear in Figure 2 a). Here a dominant 

eigenvalue is clearly stated, because the fourth is 35.11 dB 

over the second more significant one. This implies that the 

behaviour of the sample can be approximated quite well with 

TABLE 1 

MEASURED MUELLER MATRICES OF DIFFERENT SAMPLES 

Sample Mueller matrix 

Linear retarder 

+ glucose 

suspension 
1

   1 0.09 -0.093 -0.2

0.155 0.874 0.119 -0.435

-0.179 0.303 0.487 0.804

0.029 0.310 -0.837 0.383

M

 
 
 =
 
 
 

 

Glucose 

suspension of 

spheres (µs=0.6 

mm-1) in 

transmission 

2

   1 0.026 0.044 -0.039

0.029 0.962 -0.144 -0.047

0.002 0.126 0.975 0.026

-0.039 0.019 0.115 0.936

M

 
 
 =
 
 
 

 

Glucose 

suspension of 

spheres (µs=5 

mm-1) in 

transmission 

3

   1 -0.009 -0.021 -0.041

-0.002 0.256 -0.029 -0.003

0.024 0.045 0.235 -0.032

0.041 0.024 0.017 0.538

M

 
 
 =
 
 
 

 

Glucose 

suspension of 

spheres (µs=0.6 

mm-1) in 

backscattering 

4

   1 -0.115 -0.066 0.023

-0.111 0.759 -0.061 -0.001

-0.018 0.151 -0.435 -0.139

-0.046 0.006 0.128 -0.334

M

 
 
 =
 
 
 

 

 

a) 

b) 
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a non-depolarizing optical device modelled via the coherent 

scattering or Jones matrix associated with the fourth target 

vector corresponding to the dominant eigenvalue: 

 
1.7365
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1 0.2098
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As the linear retarder has a retardance of approximately 

1.27 radians at 632.8 nm, its ideal Jones matrix would be: 
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The similarity between both matrices in equations 5 and 6 

can be seen, and the influence of the optical activity of the 

glucose appears evidently in the nonzero values of the 

elements out of the main diagonal. This response is expected, 

due to the fact that a linear retarder is a non-depolarizing 

basic device, and the glucose suspension provokes no 

scattering but simple optical rotation due to optical activity, 

which is also a non-depolarizing process. In the second 

suspension, that of glucose with microspheres and a 

scattering coefficient of 0.6 mm
-1
 measured in transmission, 

matrix M2 in Table 1, the difference between the dominant 

eigenvalue and the next one is around 13 dB. The 

interpretation according to the Group Theory in polarimetry 

says that the eigenvalues take closer quantities, and this 

means that the behaviour of the sample cannot be strictly 

approximated by a non-depolarizing device. The effect is 

even more accused if the concentration of scatterers goes up 

like in matrix M3, where this difference of eigenvalues is 

only 2.893 dB. If the measurement configuration is changed 

to reflection, and so backscattering radiation is obtained, the 

results are contained in Figure 2 b). Now the difference 

between eigenvalues is only 4.217 dB, and not 13 dB like in 

the previous case. The fact that the same sample gives such 

different results under transmission or reflection 

configurations is assumable if we think that the 

backscattering process implies interactions with more 

scatterers as the optical path increases with the forward and 

back ways, and this can be interpreted like a transmission 

measurement in which the concentration of scatterers 

increases. 

VI. CONCLUSIONS 

In this article, the application of Group Theory to 

polarimetry as a way of improving contrast in biological 

images for tissue characterization has been stated. The 

SU(4)-O+(6) homomorphism has been presented in this 

field, and so the Mueller Coherency matrix that can be 

obtained from the Mueller matrix. The subsequent analysis 

of the Mueller Coherency matrix by means of its 

decomposition in eigenvalues and target vectors has been 

shown. The relative weight of these eigenvalues is very 

interesting from the point of view of tissue characterization, 

because a dominant value implies a non-depolarizing 

behaviour, as long as a coherent scattering matrix that 

describes its polarization effects. 

The method was applied to glucose suspensions of 

polystyrene spheres of different concentrations. The Group 

Theory applied to measured Mueller matrices, either in 

transmission or reflection, allows us to conclude that 

analyzing the eigenvalues and target vectors it is possible to 

perfectly distinguish different concentrations of the 

scatterers, as long as the structure and behaviour of the 

sample. In this particular case, the immediate medical 

application could be the diagnosis of cell cultures of possible 

cancerous tissues, or some anemia pathologies, where the 

number of erythrocytes in blood decreases. 

The potentiality of the Group Theory in tissue polarization 

characterization has been stated as a way of trying to 

evaluate its structure by comparing with usual optical 

devices (rotators, retarders,…), as long as their depolarising 

characteristics. This could be used to increase contrast in 

biological images, and in this way a better diagnosis could be 

made. Also it could provide a guide to eliminate secondary 

effects that hide the principal ones from the point of view of 

diagnosis, by means for instance of optical clearing to reduce 

scattering. 
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