
  

  

Abstract— This work presents an analysis of the information 

content of new features derived from the electrocardiogram 

(ECG) for the characterization of apnea-bradycardia events in 

preterm infants. Automatic beat detection and segmentation 

methods have been adapted to the ECG signals from preterm 

infants, through the application of two evolutionary algorithms. 

ECG data acquired from 32 preterm infants with persistent 

apnea-bradycardia have been used for quantitative evaluation. 

The adaptation procedure led to an improved sensitivity and 

positive predictive value, and a reduced jitter for the detection 

of the R-wave, QRS onset, QRS offset, and iso-electric level. 

Additionally, time series representing the RR interval, R-wave 

amplitude and QRS duration, were automatically extracted for 

periods at rest, before, during and after apnea-bradycardia 

episodes. Significant variations (p<0.05) were observed for all 

time-series when comparing the difference between values at 

rest versus values just before the bradycardia event, with the 

difference between values at rest versus values during the 

bradycardia event. These results reveal changes in the R-wave 

amplitude and QRS duration, appearing at the onset and 

termination of apnea-bradycardia episodes, which could be 

potentially useful for the early detection and characterization of 

these episodes. 

I. INTRODUCTION 

PNEA-BRADYCARDIA episodes are often observed in 

preterm infants. The repetition of these episodes has 

been associated with a poor neuromotor prognosis at 3 years 

[1] and has been identified as a predisposing factor to 

sudden-death syndrome in newborns [2]. Furthermore, these 

episodes extend the hospitalization periods and occasionally 

require tele-monitoring at home. Therefore, in neonatal 

intensive care units, preterm infants undergo continuous 

cardiorespiratory monitoring to detect apnea-bradycardia 
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episodes and to initiate quick nursing actions. Manual 

stimulation is the most common way to stop apnea-

bradycardia episodes in preterm newborns, however, the 

intervention delay measured from the activation of the 

monitoring alarm to the application of the therapy remains 

long [3]. 

The cardiac cycle length (RR interval) extracted from the 

electrocardiogram (ECG) is generally used to detect apnea-

bradycardia episodes. However, other parameters extracted 

from the ECG, like R-wave amplitude and QRS complex 

duration, could be also integrated in a new detection 

approach. Therefore, in this paper, three time series (RR, R-

wave amplitude and QRS complex duration) were studied for 

periods at rest, before, during and after apnea-bradycardia 

episodes. To extract these series from the ECG, a QRS 

detector algorithm [4] followed by an ECG segmentation 

method [5] were applied. However, these methods were 

conceived for the analysis of adult ECG and should be 

adapted to the specific characteristics of the newborn's ECG. 

Evolutionary algorithms (EA) were chosen to realize these 

important steps. 

II. METHODS 

A. Apnea-bradycardia ECG database 

Data were obtained from 32 premature infants, who 

presented more than one bradycardia per hour and/or the 

need for bag-and-mask resuscitation. At the moment of the 

recording, the median birth weight was 1235 g, the median 

age was 31.2 weeks and the postnatal age was 12.1 days. 

Recordings were acquired using the PowerLab®/Chart 

v4.2® system and consisted of a 1-hour recording at a 400-

Hz sampling rate of one lead ECG [6]. Bradycardia events 

were detected and annotated by analyzing the RR interval. A 

bradycardia episode was defined as RR ≥ 600 ms during 4 s 

or more [7]. Two database subsets were constructed:  

� DB1: 50 ECG segments defined from 5 minutes before 

the beginning of a bradycardia until 2 minutes after the 

end and containing only one bradycardia event during 

this whole period. Only 27 patients presented at least 

one episode as described above. In DB1 51655 R-waves 

positions have been annotated. 

� DB2: 93 ECG segments randomly chosen from the 

entire database, but different from DB1, with at least one 

ECG segment per patient. DB2 is characterized by 

normal heart rate (HR) and by one or more bradycardia 
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episodes per segment. In DB2 the position of the R-

wave, QRSon, QRSoff and the iso-electric level have 

been annotated in 4464 beats. 

B. Beat detection process 

In the QRS detection algorithm [4], the ECG signal is 

processed by a cascade of low-pass and high-pass filters 

(cutoff frequencies fcLow and fcHigh), followed by a double 

differentiator filter, an amplitude squaring process and a 

moving-window integrator of width TMWI. The final step is 

based on adaptive thresholds, which are continually adjusted 

by a set of heuristic rules, to track the changes on the ECG 

signal. Opposed to [4], a buffer (TBuff) to collect the time 

history of the signal and the peak values of the transformed 

signal obtained after the moving-window integrator, and one 

set of thresholds referred to these peak values were used. 

The adaptive threshold (THR) is found by using 

)( AvAvAv PeakPeakPeakTHR βαδβ −+=  (1) 

where PeakAv is the average of the NP most relevant peaks 

determined by using 

∑
=

=
NP
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NP

Peak
1

1
λ  (2) 

and δ, α, β, and λ are constants. Peaks greater than THR are 

considered as a QRS complex. The algorithm applies a 

refractory period (TRefr) and a search window (TPeak) in the 

band-pass filtered signal for fiducial point (FP) detection. If 

a QRS is not found during TRRlim, the parameters are reset and 

a new QRS detection process begins from the last QRS 

correctly detected. Table I summarizes the parameters of the 

beat detector to be optimized.  

C. Automatic QRS segmentation process 

In the wavelet transform (WT) segmentation method [5], 

each detected beat is extracted from the ECG and delimited 

into a small temporal support around the QRS complex. Beat 

templates are created by the average of the most recent beats, 

detected in a time history of 10 seconds. Only beats 

presenting a normalized cross-correlation higher than 0.96 

are used to update the beat template. The updated template is 

decomposed in five scales with an octave filter bank without 

decimation. Several search windows are used to find waves 

boundaries, e.g. TR1 and TR2 to identify the R-wave, TQlim to 

find the Q-wave, and TSlim for S-wave. By using (3), temporal 

parameters can be found as a scaled version (m) of the RR 

interval, for i ∈ R1, R2, Qlim, Slim.  

RRmT ii =  (3) 

Two thresholds (γQRSpre and γQRSpost) are used to find 

significant slopes of the Q and S waves. ξQRSon+ (or ξQRSon- ) 

and ξQRSoff+ (or ξQRSoff-) are thresholds used to find QRS onset 

(QRSon) and offset (QRSoff). As proposed in [8], the iso-

electric level position (ISOp) is determined as the flattest 

waveform of size TIso found on the time-window of TPQ 

seconds preceding the R-wave. TPQ and TIso can also be 

represented as a function of the RR interval by using (3). 

D. Parameter optimization based on EA 

The parameters of the beat detection and WT 

segmentation methods have been adapted to the processing 

of ECG signals acquired from preterm infants. This problem 

can be viewed as the minimization of a cost function defined 

between the observation of the events (wave annotations) 

and the algorithm output (wave detection). Evolutionary 

algorithms (EA), optimization methods inspired from natural 

selection, have shown to be well adapted to solve this kind of 

multidimensional problems [9]. A similar optimization 

problem of a signal processing chain, presenting in detail the 

optimization methodology, has recently been published by 

our laboratory [5]. Two independent EA were sequentially 

applied: EA1 optimizes the parameters of the beat detector 

and EA2 optimizes the parameters of the QRS segmentation 

method. Such a partitioning is possible because the QRS 

segmentation will be optimal only if the beat detector is 

previously optimized. The cost function (C) to be minimized 

by each EA is given by:  

( )∑ +
I

=i

iii PerrDJ+DJ=C
1

σµ  (4) 

for i ∈ FP, R-wave, QRSon, QRSoff, ISOp. It combines three 

criteria: i) mean detection jitter (µDJ) computed as the 

average of the jitter between the annotation and the detection 

over all ECG segments; ii) standard deviation of the 

detection jitter (σDJ) determined as the average of the 

standard deviation of the detection jitter of each segment 

over all ECG segments; and iii) error detection probability 

(Perr) calculated by using: 

( ) ( )22
11 iii PPVSPerr −+−=  (5) 

where S = sensitivity, PPV = positive predictive value, i ∈ 

FP, R-wave, QRSon, QRSoff, ISOp. 

To create the initial population for EA1, parameters to be 

optimized were increased and decreased from [4], whereas 

for EA2, scaled parameters defining the different temporal 

supports were defined from possible extreme positions and 

durations of each wave and scaled parameters related to 

thresholds were increased and decreased from [5]. Ranking 

selection method, simple, arithmetic and heuristic crossover, 

and multi-non-uniform and non-uniform mutation were used 

[9]. Both EA were applied for 80 generations with 200 

individuals, with a probability of crossover of 0.7 and a 

probability of mutation being high during the first 

generations and low at the end [10].  

A performance comparison before and after parameter 

optimization was made, by evaluating the sensitivity, the 

PPV, the µDJ and the σDJ on the test sets. 

E. QRS complex analysis  

Series of RR, R-wave amplitude (RAmp) and QRS duration 

(QRSDur) were determined and analyzed for each ECG 

segment from DB1. Four intervals were used for analyzing 

each series: i) T1: from 5 minutes before the bradycardia 

until the second minute, containing the HR in rest (without 
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any perturbation related to an apnea-bradycardia event); ii) 

T2: from minute 3 to 5, without bradycardia but the apnea 

episode has already begun; we would like to find some 

relevant information that arrives just before the bradycardia 

event; iii) T3: during the bradycardia event (apnea and 

bradycardia episodes are present); and iv) T4: from the end 

of the bradycardia and with a duration of 2 minutes, where, 

generally, the HR returns to its rest value. RAmp time-series 

were normalized by dividing by the highest value found in 

interval T1. The weighted mean (wµ) and the weighted 

standard deviation (wσ) were computed for each interval for 

all time series.  The average of the absolute difference of the 

mean (µAD) between values on interval T1 (considered as 

reference) and the other intervals was calculated for all 

segments as follows: 

( ) ( )
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where TS ∈ RR, RAmp, QRSDur; i ∈ 2, 3, 4; X are the available 

ECG segments; µTS(x)Ti is the mean of TS computed for 

each segment x of each interval Ti. The average of the 

absolute difference of the standard deviation (σAD) was 

estimated in a similar fashion. 

Mann–Whitney U statistical hypothesis tests was used to 

analyze the variations between intervals, where a p-value of 

p<0.05 is considered significant. 

III. RESULTS 

Results are presented in tree parts: i) conditions for the 

application of the EA, ii) the performance of the beat 

detection and WT segmentation methods, and iii) the QRS 

complex analysis for apnea-bradycardia characterization. 

A. Evolutionary Algorithm 

Two learning sets (LS1 and LS2) and two test sets (TS1 

and TS2) were constructed to carry out the optimization:  

� LS1: used for EA1 and composed of 2500 beats (50 

beats per segment) obtained from DB1, where the first 

25 ECG segments, extracted from the first part of each 

ECG segment, do not present any bradycardia episodes 

(mean RR interval of 400.89 ± 13.02 ms), whereas the 

other 25 ECG segments present bradycardia episodes 

(mean RR interval of 584.38 ± 161.79 ms).  

� LS2: used for EA2 and composed of 2256 beats from 47 

ECG segments obtained from DB2. In this set, 34 ECG 

segments (1632 beats) present a normal HR (RR interval 

of 402.39 ± 6.06 ms), the other 13 ECG segments (624 

beats) contain bradycardia episodes (RR interval of 

534.02 ± 115.14 ms).  

� TS1: used to test the optimal parameters found for EA1 

and composed of the entire DB1. 

� TS2: used to test the optimal parameters found for EA2 

and composed of 2207 beats from the rest of the 46 

ECG segments obtained from DB2. This set presents a 

normal HR (RR interval 404.19 ± 8.34 ms). 

Several QRS morphologies are present in these datasets.  

B. Beat detection and WT segmentation performance 

Parameters of the beat detector, before and after the 

optimization methodology, by using EA1 on LS1, are 

presented in Table I. Compared to those used in adults by 

[4], optimal parameters show an increase in the cutoff 

frequencies of the low-pass and high-pass filters that 

obviously are related to the fact that the QRS of preterm 

infants are generally thinner and have higher frequency 

content than the QRS of adults. Also, it is observed a 

decrease in the size of the window for moving-average 

integration that can also be explained by the higher 

frequency content of the newborn's QRS. These parameters 

have been used to evaluate the performance of the QRS 

detection method on TS1.  

Optimal parameters related to temporal search windows 

of the WT segmentation process, by using EA2 on LS2, are: 

mR1=0.1211, mR2=0.099, mQlim=0.1003, mSlim=0.1170, 

mPQ=0.1192, mIso=0.0149. An example of the optimal 

parameters, using a typical RR interval of 400 ms is 

illustrated in Table II. A comparison between our approach 

and [5], [6] is shown. It is clearly observed a reduction of all 

the search windows in our approach. These parameters have 

been used to evaluate the performance of the QRS 

segmentation method on the TS2.  

TABLE II 

SEARCH WINDOWS AND THRESHOLDS FOR A RR INTERVAL OF 400 MS, 

AND THE PARAMETERS USED BY DUMONT ET AL., SMRDEL AND JAGER 

Parameter Our approach Dumont et al. Smrde, and Jager 

TR1 48.44 ms  118 ms  

TR2 39.6 ms 111 ms  

TQlim 40.12 ms 88 ms  

TSlim 46.8 ms 154 ms  

γQRSpre 0.1241 0.09  

γQRSpost 0.0909 0.11  

ξQRSon+ 0.0486 0.07  

ξQRSon- 0.0800 0.07  

ξQRSoff+ 0.1635 0.21  

ξQRSoff- 0.6995 0.23  

TPQ 47.68 ms  108 ms 

TIso 5.96 ms  20 ms 

 

TABLE I 

PARAMETERS OF THE BEAT DETECTION METHOD AND ITS VALUES 

BEFORE AND AFTER THE OPTIMIZATION PROCESS 

Parameter Before After Units 

fcLow 15 18.567 Hz 

fcHigh 5 7.6288 Hz 

TMWI 150 55.2419 ms 

TBuff 5000 4453.9285 ms 

NP 5 12 Peaks 

λ 0.2 0.2708  

α 0.8 0.6711  

β 0.2 0.3108  

δ 0.31 0.3659  

TRefr 200 256.7595 ms 

TPeak 20 45.8864 ms 

TRRlim 1500 1811.2468 ms 
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Table III shows sensitivity, PPV, µDJ and σDJ of the 

beat detector and the WT segmentation method, before and 

after the optimization process. Sensitivity and PPV were 

obtained by using a 10 ms search window. The Table shows 

an improvement in the detection of the QRSon, QRSoff and 

Isop, and in the detection of the FP excepting σDJ. 

Performance results are comparable to those reported in the 

literature by using standard adult's ECG databases [4], [5].  

C. QRS complex analysis 

Table IV shows the wµ, wσ, µAD and σAD for all time 

series RR, normalized RAmp (NRAmp), and QRSDur. Results for 

RR and QRSDur show the highest values for T3 (bradycardia 

event), followed T2, and the lowest values for T1. The lowest 

value of the wµ  for NRAmp is obtained for T3 (as well as the 

highest value for the wσ). A diminution is observed in the 

wµ from T1 to T3 as well as an increase in the wσ from T1 to 

T3. For all the time series, higher values of the µAD and the 

σAD are obtained between T1 and T3. 

Significant differences between intervals T1 and T3 were 

observed for the RR time series (p<0.0001). Additionally, 

significant variations were observed for all time series when 

comparing T1-T2 vs. T1-T3 (p<0.0005) and T1-T3 vs. T1-T4 

(p<0.05). Time series RR, normalized RAmp, QRSDur, and an 

ECG segment with QRS segmentation are illustrated in 

figure 1. Changes in the R-wave amplitude are clearly 

observed in figure 1(c), related to the bradycardia episode 

shown in the RR time series in figure 1(a).   

IV. CONCLUSION 

This paper presents the adaptation of a beat detector and a 

WT segmentation method, to the preterm newborn's ECG. 

Optimal parameters found by using evolutionary algorithms 

have improved the performance of both methods.   

By analyzing the RR, R-wave amplitude, and QRS 

complex duration from 50 ECG segments from 27 preterm 

infants, it was observed a statistical significant modification 

in the amplitude of the R-wave and in the duration of the 

QRS complex, associated with the onset of the apnea-

bradycardia episodes. These findings show the potential 

benefit of a multivariate approach to early apnea-bradycardia 

detection and characterization. 
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TABLE III 

BEAT DETECTION AND QRS SEGMENTATION PERFORMANCE, BEFORE 

AND AFTER THE OPTIMIZATION PROCESS 

Criteria FP R-wave QRSon QRSoff ISOp 

Bef. 88.12 98.46 40.33 77.07 0 S (%) 

Aft. 97.23 98.46 90.21 80.24 80.61 

Bef. 88.38 98.46 40.33 77.07 0 PPV (%) 

Aft. 97.95 98.46 90.21 80.24 80.61 

Bef. 4.29 1.39 43.48 7.81 48.88 µDJ (ms) 

Aft. 2.18 1.69 3.07 4.49 4.29 

Bef. 12.61 1.44 11.61 5.64 2.61 σDJ (ms) 
Aft 14.68 0.66 1.27 2.64 2.29 

 

TABLE IV 

Wµ, Wσ, µAD AND σAD FOR TIME SERIES RR, NRAMP, AND QRSDUR 

Criteria RR (ms) NRAmp QRSDur (ms) 

(wµ±wσ)T1 407.90±14.60 0.8233±0.060 61.03±5.88 

( wµ±wσ)T2 414.58±28.43 0.8187±0.063 61.58±6.22 

(wµ±wσ)T3 712.01±147.9 0.8155±0.075 66.35±15.06 

(wµ±wσ)T4 413.89±19.72 0.8293±0.066 61.43±7.08 

(µAD±σAD)T1-T2 11.26±15.31 0.0442±0.019 2.02±10.17 

(µAD±σAD)T1-T3 285.06±123.2 0.0966±0.038 2.57±1.66 

(µAD±σAD)T1-T4 13.93±8.76 0.0585±0.023 9.38±2.17 
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Fig. 1.  (a) RR, (b) QRS duration, (c) Normalized R-wave amplitude 

and (d) typical QRS complex segmentation results. In (a)-(c), the 

vertical dashed lines delimit the intervals T1-T4, whereas in (d), the 

vertical dashed lines show the automatic QRS segmentation (QRSon, 

R-wave, and QRSoff) 
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