
  

  

Abstract—Robust beat detection under noisy conditions is 

required in order to obtain a correct clinical interpretation of 

the ECG in ambulatory settings. This paper describes the 

evaluation and optimization of a beat detection algorithm that is 

robust against high levels of noise. An evaluation protocol is 

defined in order to study four different characteristics of the 

algorithm: non-rhythmic patterns, different levels of SNR, exact 

peak detection and different levels of physical activity. This 

protocol is based on the MIT/BIH arrhythmia database and 

additional ECG recordings obtained under different levels of 

physical activity measured by 2-axis accelerometers. The 

optimized algorithm obtained a Se=99.65% and +P=99.79% on 

the MIT/BIH arrhythmia database while keeping a good 

performance on ECGs with high levels of activity (overall of 

Se=99.86%, +P=99.91%). In addition, this method was 

optimized to work in real time, for future implementation in a 

Wireless ECG sensor based on a microprocessor.  

I. INTRODUCTION 

HE fast improvement of microelectronics and 

computational systems have lead to the design of 

portable devices that permit the ambulatory recording of 

ECG signals during routinary life. These devices have been 

improved drastically in the last years by reduction of weight, 

size and energy consumption, while the available 

computational power has been increased. As they get more 

power efficient, they permit ECG monitoring over longer 

periods of time. The increased computational power enables 

execution of more complex algorithms, giving the 

opportunity to use new advanced techniques of signal 

processing. This permits the automatic analysis of cardiac 

signals leading to several clinical applications such as 

arrhythmia detection. This is still challenging, due to the fact 

that the algorithms embedded in portable devices need to 

comply certain requirements in order to meet the memory 

and complexity limitations of the microprocessors.  

One of the most targeted problems in the automatic 

analysis of ECG signals is the detection of the QRS complex, 

also known as beat detection [1]. Many algorithms have been 

developed for this purpose and different techniques have 

been used for this problem. Among these techniques are 

Time Domain methods, such as Zero-Crossing [2] and Signal 

Derivatives [3], Digital Filters [4], Filter Banks [5], Neural 

Networks [6] and Wavelet Analysis [7, 8]. These methods 
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give satisfactory results with detection rates quite over 99 % 

while used in hospital conditions. 

For ambulatory monitoring the challenge of beat detection 

increases as the level of noise and motion artifacts is 

considerably higher than for hospital monitoring. Such an 

environment calls for algorithms that are robust against the 

noise induced by daily-life activities while maintaining a 

high level of accuracy. This should also take into account the 

computational complexity and memory in addition to the 

numerical resolution that typically have more limitations in 

portable devices. 

This paper describes the optimization of a method for beat 

detection based on the Continuous Wavelet Transform 

(CWT) [8]. This algorithm was optimized to work in real 

time and under reasonable levels of noise due to movement. 

With that aim, we propose a protocol for studying the 

performance of the algorithm by measuring different 

parameters that are related to real life activity. The final 

objective is the hardware implementation of the algorithm in 

the microprocessor of a future wireless ambulatory cardiac 

monitor. 

II. METHODS 

A. Beat Detection Algorithms 

Three methods for beat detection were selected for further 

investigation. The first algorithm considered was a Time-

Domain method (TD) which was based on the method 

published in 1985 by J. Pan and W.J. Tompkins [9]. This 

method was found to have a well-balanced trade-off between 

detection performance and computational complexity, which 

could make it a good technique to embed in a 

microcontroller. A second candidate was an algorithm based 

on the Discrete Wavelet Transform (DWT) developed by 

J.P. Martinez et al. [10].  Wavelets were selected as they 

work as filter banks and hence provide robustness against 

noise. The Continuous Wavelet Transform (CWT) provides 

more flexibility in the filter bank design, and can thus be 

matched to the properties of the different components of 

interest within a beat. Therefore, a method based on this 

technique and developed by I. Romero et al. [8] was also 

investigated.  

B. CWT Algorithm Optimization 

Romero’s algorithm [8] was originally tested and 

developed with ECG signals recorded in hospital where 

levels of noise and artifacts are significantly lower than the 

levels recorded during ambulatory monitoring. The 
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algorithm was implemented following the scheme as 

described in the publication (Fig. 1) and further optimized, 

taking into account that the final application will be an 

ambulatory device. With this aim, several changes were 

investigated. 

The modulus maxima algorithm relates the peak detection 

to the maximum value within the analysis window, and hence 

it is very sensitive to peaks in the CWT domain that can 

occur due to transitional high levels of noise. To avoid this, 

the threshold (thnew) was computed recursively – by using a 

weighted sum of the previous threshold (thold) and the newly 

calculated threshold (thcurrent) as in (1).  

 

currentoldnew thwthwth ⋅−+⋅= )1(   (1) 

 

Several weights (0≤w<1) were investigated to find the 

optimal values. In the original algorithm, possible beats were 

considered as soon as the threshold is exceeded in one of the 

wavelet scales. A more stringent condition can be defined so 

that a beat must exceed the threshold in at least N out of K 

scales. 

Finally, the possibility of re-adapting the threshold in 

function of the heart rhythm was also investigated. In this 

implementation, the threshold is changed in case of abrupt 

changes in rhythm, in order to verify whether the rhythm 

change is due to a change in cardiac activity or to false 

detections as a result of noise. 

C. Evaluation Protocol 

For evaluating the different versions of the algorithms a 

set of tests was developed that permits the evaluation of the 

performance as a function of a wide range of conditions. 

This test protocol was then used for benchmarking the 

different methods and to study the improvement of the 

optimization steps. 

In the first part of the test the MIT/BIH arrhythmia 

database was used. This database is considered as a standard 

dataset widely used for beat detection algorithm testing. It 

permits the comparison of different methods, and contains a 

wide spectrum of different rhythmic and pathological 

patterns that can be observed in clinical practice. 

A second part of our test protocol aimed to study the 

robustness against noise. Signal 100 from the MIT/BIH 

dataset was selected for having a very clean ECG signal. To 

simulate different levels of noise, a noise signal obtained 

from the MIT-BIH Noise Stress Test Database was added to 

this clean ECG. A range of SNR varying from -10 to 10 dB 

in steps of 1 dB was considered. The noise signal em was 

used, to mimic electrode motion artifact – that is considered 

to be the most relevant source of noise in an ambulatory 

monitoring setting. 

As high accuracy in time is typically required for several 

applications on ECG analysis (such as Heart Rate 

Variability, Synchronous Averaging) we also propose a third 

test, where the accuracy of the algorithm in detection the 

exact R-peak was investigated. Two hours of data obtained 

from in-house recorded signals were annotated. For this test 

a sample frequency of 1000 Hz was used in order to obtain a 

more accurate time resolution. 

Finally, in order to test the performance of an algorithm 

under different levels of activity in true ambulatory 

conditions, a set of ECGs were recorded using wireless ECG 

devices developed by our research group [11]. Ten healthy 

subjects were selected. For each volunteer, recordings of 10 

minutes length were obtained in 3 levels of activity: low 

level activity: sitting at the desk, medium level of activity: 

biking on a static bike at 70 rpm and 100 Watts, and high 

level of activity: running on a treadmill at 7.5 km/h. The 

cardiac activity was recorded using our flexible ECG Patch 

[11], [12], attached to the chest of the subject using standard 

lead positions I and II. In order to quantify the level of body 

movement, a 2-dimensional accelerometer was incorporated 

to the ECG sensor. The modulus of the vector formed by the 

two directions was obtained and the RMS value after 

subtracting the DC component was calculated as a reference 

of the motion level (Fig. 2). The sample frequency of the 

signals was 198 Hz. The ECG signals were manually 

annotated in order to mark the QRS complex. The peak of 

the R wave was considered as the fiducial point for the 

annotations. The time intervals where the SNR was too low 
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Fig. 1. Scheme of the CWT algorithm developed by Romero et al. [8]. 
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Fig. 2. Output signal measured by an accelerometer placed at the chest 

under three levels of activity. 

951



  

for manual annotation were excluded of any further study. In 

total, 45 records were considered with a duration of 10 

minutes each. 

III. RESULTS 

A. Algorithm comparison on MIT/BIH Arrhythmia 

database 

It was found that the TD algorithm has a very high 

positive predictivity. However, it can be sensitive to sudden 

changes in heart rhythm which decreases its sensitivity.  The 

DWT algorithm is quite sensitive to noise, which is relatively 

often detected as a peak which gives a high number of false 

positives and therefore low positive predictivity. The 

algorithm based on the CWT outperformed the other two 

methods giving a total Sensitivity of 99.64% and Positive 

Predictivity of 99.65%. The performance of the algorithms 

on the MIT/BIH can be seen in Table I.  

B. Algorithm Evaluation 

The results of the test for robustness to noise are plotted in 

Fig. 3. Analyzing the sensitivity of the three methods, it can 

be observed that all methods score very well at SNR levels 

above 5 dB. At SNR levels below 5 dB, the performance of 

DWT decrements, while TD and CWT keep a high 

sensitivity down to a SNR of 0 dB. Below 0 dB, the 

sensitivity of both CWT and TD quickly decreases.  

In terms of positive predictivity TD has a significantly 

better performance while CWT and DWT have a similar 

behavior with a fast decrement below 7 dB. 

For the accuracy of the exact R-peak detection it was 

observed that the CWT obtains a high accuracy with an 

averaged deviation of 0.03 ms per beat (99.9% of the beats 

were detected with perfect accuracy), while TD and the 

DWT have an averaged deviation of 9.79 ms (with 19.2% of 

the beats detected perfectly) and 71.74 ms (with 25.9% of 

the beats detected perfectly), respectively. 

Finally, the algorithms were tested with signals collected 

during three different activities. The level of activity 

measured by accelerometers were in median 0.26 m/s
2
 at 

work, 0.71 m/s
2
 on biking and 5.57 m/s

2
 when the activity 

was running. CWT had again the best performance with a 

Sensitivity and Positive Predictivity close to 100% for all the 

activities. TD had a high positive predictivity however the 

sensitivity decreased significantly when the activity level 

increased. DWT had opposite performance with high 

sensitivity and low positive predictivity in noisy conditions. 

The results are plotted in Fig. 4.  

 After observing these results, it was concluded that the 

CWT algorithm had an overall good performance. However 

it was still not so robust under high noise conditions (Fig. 3). 

This algorithm was therefore selected for further 

optimization. 

C. CWT Algorithm Optimization 

With the aim of obtaining a better performance, several 

changes were proposed to the original version of the CWT 

algorithm and evaluated following the evaluation protocol. 

First, (Step 1) it was found that equal weighting (w=0.5 in 

TABLE I 

BEAT DETECTOR RESULTS ON MIT/BIH DATABASE  

 TD DWT CWT 

Signal Se +P Se +P Se +P 

100 99.96 100.00 100.00 99.96 100.00 99.96 

101 99.95 99.84 99.95 98.36 99.95 99.73 

102 100.00 100.00 99.73 99.63 100.00 100.00 

103 99.81 100.00 100.00 99.95 99.95 100.00 

104 99.87 98.23 99.46 85.86 99.87 97.03 

105 99.69 98.12 98.83 94.22 99.42 97.89 

106 98.22 99.85 97.39 99.15 98.62 100.00 

107 99.86 100.00 99.77 99.81 99.72 99.91 

118 100.00 99.74 99.96 95.99 99.96 99.78 

119 100.00 100.00 97.48 95.70 100.00 99.90 

200 99.85 99.31 98.62 89.72 99.92 99.85 

201 96.33 99.95 98.88 99.44 100.00 99.59 

202 99.86 99.58 98.50 97.32 99.86 99.95 

203 92.48 98.96 94.93 87.99 97.72 98.91 

205 99.25 100.00 99.10 99.77 99.85 100.00 

208 67.03 99.85 87.65 98.14 99.32 99.83 

209 98.17 100.00 99.90 98.46 100.00 100.00 

210 96.07 97.51 99.09 96.44 98.45 99.77 

212 99.89 100.00 100.00 98.78 99.96 100.00 

213 99.69 100.00 99.42 99.88 99.97 99.97 

214 99.73 99.91 99.29 98.86 99.78 99.96 

215 99.49 100.00 99.85 99.29 99.97 99.85 

217 99.59 99.91 99.41 99.68 99.64 99.86 

219 99.49 100.00 99.86 100.00 100.00 100.00 
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Fig. 3.  Noise Test Results. 
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Fig. 4.  Activity Test Results. 
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(1)) gave best results on the MIT/BIH database. As a second 

step (Step 2), the threshold was applied on several wavelet 

scales and only when exceeded in at least 2 scales, possible 

beats were considered. Finally, (Step 3) the possibility of re-

adapting the threshold in function of the heart rhythm was 

investigated. As the original algorithm showed very good 

performance in accurately detecting R-peaks, no changes 

were proposed in this sense and therefore, the R-peak test 

did not show any changes. Fig. 5 shows the results obtained 

for the evaluation of the different optimization steps on both 

the MIT/BIH arrhythmia database and the whole dataset of 

our signals under different activity levels (IMEC dataset).  

The different changes proposed showed some 

improvement of the algorithm performance. In Step 1 the 

sensitivity and positive predictivity increased in both the 

MIT/BIH and our own dataset. Step 2 decreased slightly the 

sensitivity of the algorithm but improved significantly the 

positive predictivity in both datasets. Step 3 did not show 

much improvement on the IMEC database, but the sensitivity 

dropped drastically on arrhythmic ECGs (as in the MIT/BIH 

database), which is explained by the assumption of some 

regularity in the heart rate by this step. 

Fig. 6 shows the results of the noise test for the different 

versions of the algorithm. It can be seen that while the 

sensitivity of the algorithm does not have a big change, the 

positive predictivity improves on each of the additional 

steps. 

IV. CONCLUSION 

This study investigates the problem of beat detection in 

ambulatory ECGs, emphasizing the challenge of a generic 

method that can be used in clinical conditions and is robust 

against noise. We compared three classical methods, based 

on Time (TD) and Wavelet Domain (DWT and CWT). A 

test protocol was proposed with the aim of evaluating these 

techniques under a wide range of conditions. 

Although there is no single technique that gave the best 

results for all different conditions we tested, we observed 

that CWT had an overall superior performance to the other 

two on this test protocol. Therefore CWT was selected for 

further optimization. After the proposed changes, we got an 

optimal performance after Step 2. Step 3 gave significant 

improvement of +P at the expense of a significant decrease 

in Se and was therefore omitted. After optimization (up to 

Step 2), we obtained an improvement on +P of 0.14 in both 

MIT/BIH and IMEC databases, while keeping the Se on the 

same level. The final algorithm is very suitable for cardiac 

monitoring in ambulatory environments. 
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Fig. 6.  Optimization Results on Noise Test. 
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Fig. 5.  Optimization Results on MIT/BIH database and our dataset.  
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