
 

 

 

  

Abstract—The stationary wavelet packet analysis is exploited 

for the first time in the design of a self-paced BCI based on 

mental tasks. The BCI system is custom designed to achieve a 

zero false positive rate, as false activations highly restricts the 

applications of BCIs in real life. The EEG signals of four 

subjects performing five different mental tasks are used as the 

dataset. The stationary wavelet packets decompose the signal 

into eight components. The features used are the autoregressive 

coefficients obtained by applying autoregressive modeling on 

the resultant wavelet components. Classification is a two-stage 

process. The first stage is based on quadratic discriminant 

analysis which is extremely fast. The second stage is a simple 

majority voting classifier. During model selection, which is 

performed via 5-folded cross-validation, the combination of 

decomposed components and the autoregressive model order 

that yield the best performance are selected. Results show 

enhancements in the overall performance for three subjects 

comparing to our previously designed BCI. 

I. INTRODUCTION 

RAIN–computer interfaces (BCIs) provide an 

alternative means of communication and are thus 

expected to improve the life quality of motor disabled 

individuals. A self-paced BCI can be used in real-life 

applications. Unlike synchronized BCIs, a self-paced BCI is 

controllable at all time instants. The state in which the BCI is 

activated is called the intentional-control (IC) state. The no-

control (NC) state is the BCI inactive state. Classifying the 

IC and NC states correctly is the ultimate goal in developing 

BCI systems. The rate of correctly classifying the IC states is 

referred to as the true positive rate (TPR). Misclassifying the 

NC states is measured by the false positive rate (FPR). The 

ideal values for TPR and FPR are 100% and zero, 

respectively [1], [2]. 

To operate a BCI, specific features in the brain signals 

related to neurological phenomena should be recognized. 

The phenomena related to various brain activities differ in 

terms of time and frequency specifications. In this paper, the 

BCI rely on mental tasks as the neurological phenomena, i.e., 

the user controls the proposed BCI by performing different 
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mental tasks. 

In this study, the EEG signals of 4 subjects each 

performing 5 mental tasks are used. This dataset has been 

collected by Keirn and Aunon [3] and has been used in many 

other studies such as [5]-[12]. We design five self-paced 

BCIs for each subject; each is based on one of the five 

mental tasks. In each BCI, one mental task is treated as the 

IC task and the other four mental tasks are considered as NC 

tasks. Unlike other studies based on this dataset, we pay 

special attention to FPR values since they are of great 

importance in real-life BCI applications. We aim at 

obtaining a zero FPR by custom designing our BCI system 

for every mental task of each subject. 

The design of the proposed self-paced mental-task based 

BCI is described in section II. Section III presents the results 

and discussion. The conclusions are in section IV. 

II. METHODS 

A. Data 

The EEG signals used in this paper were recorded from 

six mono-polar electrodes placed at C3, C4, P3, P4, O1, and 

O2 based on the International 10-20 System. Electrically 

linked mastoids, A1 and A2 were the references. Two 

electrodes were also placed below and at the corner of the 

left eye for ocular artifact detection. However, we here do 

not remove any part of the signals due to artifacts. 

The sampling frequency was set at 250 Hz. The electrode 

impedance was kept below 5 kΩ. The EEG signals were 

recorded using a bank of amplifiers (Grass 7P511) with the 

band-pass filters (set at 0.1-100 Hz) and a Lab Master 12-bit 

A/D converter. 

Seven subjects seated in a sound-controlled dim-lighted 

recording room performed the following five mental tasks: 

the baseline (thinking of nothing); the multiplication task 

(mentally solving a nontrivial multiplication such as 14×63); 

the letter composing task (mentally composing a letter to a 

friend); the rotation task (mentally rotating a given 3D 

object); and the counting task (visualizing writing a sequence 

of numbers on a blackboard). 

In each recording session, five 10-second trials for each of 

the five mental tasks (a total of 25 trials) were collected. 

Different subjects completed different numbers of trials as 

shown in Table I. The EEG signals of Subject 4 contain 

some missing data and were not used in this study. The first 

10 trials (out of 15 trials) of Subject 5 and the 10 trials of 

Subjects 1, 3, and 6 were used. Please refer to Table I to see 

the numbers we newly assigned to the subjects. 
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B. Stationary Wavelet Packet Analysis 

To simultaneously analyze the signal specifications in the 

time and frequency domains, wavelet analysis is considered 

as a powerful tool. The shift-invariency of the stationary 

wavelet transform (SWT) makes this analysis more 

applicable [4]. 

In our previous study [5], we decomposed the EEG 

signals into 5 levels using SWT. Then the autoregressive 

models of the decomposed signals were used as the features. 

Different wavelet families that were used include: Haar 

wavelet (‘db1’), Daubechies (‘db2’, ‘db3’, ‘db4’, ‘db5’, 

‘db6’, ‘db7’, ‘db8’, ‘db9’, ‘db10’), Biorthogonal (‘bior1.3’, 

‘bior1.5’, ‘bior2.2’, ‘bior2.4’, ‘bior2.6’, ‘bior2.8’, ‘bior3.1’, 

‘bior3.3’, ‘bior3.5’, ‘bior3.7’, ‘bior3.9’, ‘bior4.4’, ‘bior5.5’, 

‘bior6.8’), Coiflets (‘coif1’, ‘coif2’, ‘coif3’, ‘coif4’, ‘coif5’), 

Symlets (‘sym2’, ‘sym3’, ‘sym4’, ‘sym5’, ‘sym6’, ‘sym7’, 

‘sym8’). 

Decomposition at each level yields two types of 

components: the approximations component (the low-

frequency high-scale component of the signal) and the 

details component (the high-frequency low-scale 

component). The resultant approximations component at 

each level is decomposed iteratively. Please see Fig. 1.a. 

Since the sampling frequency is 250 Hz, the maximum 

frequency of the EEG signal is assumed to be 125 Hz. The 

frequency ranges pertaining to each level in the wavelet 

decomposition is shown in Table II. In study [5], we worked 

with the frequency ranges 0-3.91, 3.91-7.81, 7.81-15.63, 

15.63-31.25, and 31.25-62.5 Hz. 

Signal decomposition with the wavelet packet analysis is 

different from the ordinary wavelet decomposition in the 

sense that at each level, the details component and not only 

the approximations component is decomposed iteratively. 

Therefore, the wavelet packet decomposition offers a more 

flexible (but at the same time, more complicated) 

decomposition. In the present work, we decompose the EEG 

signals using wavelet packet analysis. Fig. 1.b illustrates the 

scheme of the wavelet packet decomposition. Table III 

presents the frequency range of each component of the first 3 

levels. 

It is noteworthy that ordinary wavelet transforms are 

usually exploited in the wavelet packet decomposition; 

however, having seen the good performance of the stationary 

wavelet transform in our previous study [5], we propose to 

use it in the wavelet packet analysis in this study. Thus we 

call the whole process the stationary wavelet packet analysis 

(SWPA). 

C. Autoregressive Modeling 

The autoregressive (AR) model of order R for the one-

dimensional signal z[t] is defined as: 
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            (1) 

where ar are the AR coefficients, and the error u[t] is a zero 

mean, finite variance stochastic process that is independent 

of the previous values of z. The ar coefficients are estimated 

from the finite samples of z. 
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Fig. 1.  Decomposition:  

(a) wavelet decomposition, (b) wavelet packet decomposition. 

 
TABLE II 

FREQUENCY RANGES IN WAVELET DECOMPOSITION (HZ) 

Level Approximations Details 

1 0–62.5 62.5–125 
2 0–31.25 31.25–62.5 
3 0–15.63 15.63–31.25 
4 0–7.81 7.81–15.63 
5 0–3.91 3.91–7.81 

It is assumed that the original signal has the frequency band 0-125 Hz. 

 
TABLE III 

FREQUENCY RANGES IN WAVELET PACKET  DECOMPOSITION (HZ) 

Frequency 
 

0–125 
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D. Procedure 

Since each trial is 10 seconds long and the sampling rate is 

250 Hz, each trial has 2500 samples. Trials are broken into 

45 segments. Each segment has 256 samples and overlaps by 

206 samples with the next segment. There are 10 trials for 

every mental task of each subject; hence, 450 segments exist 

for every mental task of each subject. 

In this study, we decompose the segments into 3 levels 

with the stationary wavelet packet analysis. For each mental 

task of each subject, we use the wavelet family that had the 

best performance in [5]. We estimate the autoregressive 

model of the decomposed wavelet components using the 

Burg algorithm [13]. The AR coefficients are then exploited 

as the features.  

Since there is no straightforward way to find the optimum 

AR model order, we varied the AR model order from 2 to 22 

for each subject and each mental task. The optimum model 

order is then selected based on the obtained TPR and FPR 

values of the BCI. To this end, a 5-folded cross-validation is 

used. 

During the model selection, we also obtain the 

combination of the decomposed components (at level three) 

that yields the best performance in terms of TPR and FPR. 

To do this, for each 8 components of the third decomposition 

level, a different classifier is trained. For each classifier, the 

AR coefficients of the corresponding component of the 

different channels are concatenated into a vector. This vector 

forms the feature vector.  

The final output of the BCI is based on majority voting 

between the classifiers corresponding to the selected 

components. See Fig. 2. If the number of classifiers voting 

for the IC task is equal to the number of classifiers voting for 

the NC task, the final output of the BCI is considered to be 

NC, since we want to have FPR as less as possible. 

E. Quadratic Discriminant Analysis 

Quadratic discriminant analysis (QDA) [14] is used as the 

classifier, since it is simple, fast, and easy to implement. 

QDA assumes the classes have normal distributions. For a 2-

class problem, the quadratic discriminant function is 

simplified as: 
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where z is the vector to be classified, 21
ˆ,ˆ µµ  are the estimated 

mean vectors of the classes, 
21

ˆ,ˆ ΣΣ  are the estimated 

covariance matrices of the classes, 
21,ππ  are the prior 

probabilities, 12C  is the cost of misclassifying a member of 

class 1 as class 2, and 
21C  is the cost of misclassifying a 

member of class 2 as class 1. The decision rule is as follow: 
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             (3) 

where 21,ωω  represent classes 1 and 2, respectively. 

In this study, the last term in equation (2) is zero since we 

assume the same value for the two costs, and the same value 

for a-priori probabilities. 

III. RESULTS AND DISCUSSION 

The performance of the proposed BCI during testing 

process is given in Table IV. We compare the results of this 

study with the results of our previous study [5]. For the 

present study, the FPR value always reaches zero. 

According to Table IV, the present method outperforms 

the method of [5] for Subjects 1, 3, and 4. For Subject 1, the 

TPR values of all mental tasks (except the baseline) are 

higher. For Subject 3, the performance of every BCI is 

enhanced. For Subject 4, the mean TPR of the rotation task 

is reduced by 2.89%. For the multiplication task, TPR 

decreases but FPR reaches zero. Hence the performance 

improves. The TPR values of other tasks increase. For 

Subject 2, the performance degrades for three mental tasks. 

The most discriminatory mental task for each subject is 

the task with the lowest FPR and the highest TPR. Most 

discriminatory tasks are shaded in Table IV. The most 

discriminatory task was changed for Subjects 1, 2, and 4. For 

subjects 1, 3, and 4, the TPR value of the new most 

discriminatory task is higher than the TPR value of the 

previous most discriminatory task. For Subject 1, the most 

discriminatory task is changed from the letter composing 

task to the multiplication task with a TPR improvement of 
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Fig. 2.  Overview of the system. 
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12.89%. For Subject 3, the rotation task remains as the most 

discriminatory task, but TPR increased by 14%. For Subject 

4, the most discriminatory task is changed from the rotation 

task to the multiplication task with 2.89% increase in the 

TPR value. For Subject 2, the most discriminatory task is 

changed from the letter composing task to the rotation task 

with 8% decrease in TPR. The results showing that the new 

system is not working well for Subject 2, supports the idea of 

custom designing BCI systems for different subjects [15]. 

IV. CONCLUSION 

In this paper, we presented a new self-paced mental task-

based BCI using the stationary wavelet packet 

decomposition approach. Our work was compared to our 

previous work that was also carried using the same data, and 

it showed that the present method has a better performance 

for three out of four subjects. 

For our future work, we plan on considering other feature 

extraction methods and classifiers (such as support vector 

machines) to further enhance the performance of our BCI 

system. 
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