
  

  

Abstract—A robust and fast method to assess the validity of a 

motor unit potential train (MUPT) obtained by decomposing a 

needle-detected EMG signal is proposed. This method 

determines whether a MUPT represents the firings of a single 

motor unit (MU) or the merged activity of more than one MU, 

and if is a single train it identifies whether the estimated levels 

of missed and false classification errors in the MUPT are 

acceptable. Two supervised classifiers, the Single/Merged 

classifier (SMC) and the Error Rate classifier (ERC), and a 

linear model for estimating the level of missed classification 

error have been developed for this objective. Experimental 

results using simulated data show that the accuracy of the SMC 

and the ERC in correctly categorizing a train is 99% and %84 
respectively. 

I. INTRODUCTION 

NFORMATION regarding motor unit potential (MUP) 
waveforms and motor unit (MU) firing patterns during 

muscle contractions is very useful for clinical examination 
as well as physiological investigation. Specifically, such 
information can assist with the diagnosis of neuromuscular 
disorders [1]-[3] and the understanding of motor control [4]. 
For example, the shape and stability characteristics of 
needle-detected MUPs can be used to aid in the diagnosis of 
some neuromuscular disorders such as myopathic and 
neuropathic diseases [5], [6]. An effective way of obtaining 
MUPT information is via EMG signal decomposition.  

EMG signal decomposition is the process of resolving a 
composite EMG signal into its constituent motor unit 
potential trains (MUPTs). In general, this process is done in 
four steps: signal preprocessing, signal segmentation and 
MUP detection, clustering of detected MUPs, and supervised 
classification of detected MUPs [7]. 

The goals of automatic decomposition techniques are to 
extract a template MUP waveform and MU firing pattern for 
each MU that contributed significant MUPs to the original 
composite signal. Diagnosis is then facilitated by 
decomposing a needle-detected EMG signal, measuring the 
features of the detected MUPTs and finally analyzing the 
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measured features [8]. 
Although quantitative analysis of the extracted 

information from decomposed EMG signals can facilitate 
the diagnosis and treatment of neuromuscular diseases, this 
is can only happen when this information is valid. Therefore, 
before using decomposition results (i.e.  MUP shape and 
MU firing pattern information) for either clinical or research 
purposes the fact that the extracted MUPTs, obtained using 
either a manual or automatic EMG signal decomposition 
process, are representative of the occurrence times of single 
MUs and have low numbers of false classification errors 
(FCEs) needs to be confirmed. Although many methods 
have been developed to decompose EMG signals, automatic 
validation of the obtained MUPTs have not been studied in 
detail.  

Assessing the validity of a MUPT can be split into two 
tests: a test of MUP shape validation, and a test of MU firing 
pattern validation. For the MUP shape validation test, a 
given train is assessed based on the shapes of the MUPs 
assigned to it. The goal is to assess whether the shapes of the 
MUPs in a decomposition-created MUPT represents the 
MUPs of a single MU or not.  For the MU firing pattern 
validation test, a given MUPT is evaluated considering the 
times of occurrence of the MUPs assigned to it. A train is 
considered valid if it passes both tests. In this work, details 
of the MU firing pattern validation test are presented. A 
system to facilitate temporal validation of MUPTs is 
developed. The system validates a given MUPT using firing 
pattern information extracted from the MUPT. A MUP 
shape validation test is discussed elsewhere [9].   

II. METHODOLOGY 

A. MU Firing Pattern 

MU firing patterns are usually represented by the intervals 
between two consecutive MU firings in a MUPT, which are 
called inter-discharge intervals (IDIs). During short, 
constant-force (or slowly-changing force) low-level 
contractions,  IDIs follow a Gaussian distribution  with a 
mean related to the inverse of the mean firing rate of the MU 
and a standard deviation of 10%–25% of the mean [10]-[12]. 
The IDI distribution of an invalid MUPT, however, does not 
look like a Gaussian distribution. Depending on the type of 
errors present, the IDI distribution is skewed to the left or to 
right [10], [13], and [14]. In this section, we describe three 
types of invalid trains and their IDI distributions that may 
result from the decomposition of an EMG signal.   

A merged train is created when the shapes of MUPs 
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created by two or more different MUs are very similar to 
each other such that a decomposition algorithm erroneously 
considers these MUPs as being created by one MU and thus 
places them in one MUPT. However, the IDIs extracted 
from a merged train do not have the characteristics of a 
typical MU firing pattern. The IDI distributions of merged 
trains are less like a Gaussian distribution, presenting much 
wider ranges of variation with no central peaks relative to 
the IDI histogram of a single train. 

An incomplete train is a MUPT for which all MUPs 
generated by a MU are not assigned to this train. Missed 
classification errors (MCEs) stand for those MUPs of this 
MUPT that were missed during the MUP detection, 
clustering or classification steps. Incomplete trains are 
created due to unresolved superimposed MUPs, insufficient 
knowledge about the exact shape of the template MUP of a 
MUPT and its MU firing pattern statistics. Due to missing 
MUPs, long intervals occur between consecutive MUPs and 
hence the IDI distribution is skewed to the right. High levels 
of MCE make the measurement of MU firing pattern 
statistics and the prototypical MUP for each active MU 
unreliable, because the sample size is small. 

A contaminated train is a MUPT that includes some 
mistakenly assigned MUPs. These mistakenly assigned 
MUPs are called false classification errors (FCEs). As with 
MCEs, FCEs are due to the fact that the exact shape of the 
template of a MUPT and MU firing pattern statistics are not 
known. Therefore, when MUPs created by two or more MUs 
are very similar they may assigned to the wrong MUPTs. 
FCEs cause the number of shortened IDIs in a single train to 
increase. Therefore the IDI distribution of a single train with 
high FCE skews to the left and the MU firing pattern 
statistics of this train are underestimated. Finding invalid 
trains caused by these three types of errors can improve the 
robustness of an EMG decomposition algorithm and can also 
improve the accuracy of conclusions made based on 
information extracted from the results of a decomposition 
algorithm. 

B. Validating a MU Firing Pattern  

The overall procedure of the developed MU firing pattern 
validation algorithm is shown in Fig.1. This method is based 
on the fact that the IDI characteristics of single/valid trains 
differ from those of merged MUPTs and trains with large 
numbers of MCEs or FCEs. As shown, the goal is to assess 
whether a MUPT represents the firings of a single MU or the 
merged activity of more than one MU, and if is a single train 
determine whether the estimated level of MCE and FCE in 
the MUPT is acceptable. These three conditions are tested 
using two supervised classifiers, the Single/Merged classifier 
(SMC) and the Error Rate classifier (ERC), and a first order 
linear model. The SMC classifier determines whether a 
given train is a single train. The ERC classifier determines 
whether the estimated level of FCE in the given MUPT is 
acceptable. The linear model estimates the level of MCE in 
the considered train.  

A train will be labeled as valid if it is labeled as a single 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1.Procedure for validating MU firing pattern 

train, by the SMC, if the estimated level of FCE is 
acceptable, as determined by the ERC and the level of MCE 
in the train is acceptable, as determined by the linear model. 
In this work the acceptable levels for FCE and MCE were 
set to 5% and 70% respectively. The detailed composition of 
this method including feature extraction, classifier and linear 
model development is presented below. 

C. Discriminative Features 

As discussed above, certain firing pattern characteristics 
of a single train are not similar to those of a merged, 
contaminated or incomplete train. We therefore used these 
different characteristics as features for the classification task. 
Here, in addition to their general discriminate ability, the 
features should also be sufficiently discriminative even for 
trains with high values of MCE, which usually happens 
during the initial steps of a decomposition process. The 
features used in this work are listed in Table 1. Except for 
IDrate which targets the right side of the IDI distribution to 
measure the level of MCE in the MUPT, these features 
target the left side of an IDI distribution, where short IDIs 
or, in other words, the errors of interest are reflected. See 
[14] for detailed feature definitions. 

To calculate the features used, the mean (µ) and standard 
deviation (σ ) of the IDIs of a MUPT must be known.  
These two parameters were estimated using the error-
filtering algorithm (EFE) presented by Stashuk and Qu [10]. 

D. The SMC and ERC Supervised Classifiers 

To determine the best implementation for the SMC and 
the ERC, three classification methods were examined; Fisher 
linear discriminate analysis (FDA), Support Vector Machine 
(SVM) and Pattern Discovery (PD).  

FDA was considered because it is a very simple and 
powerful linear classifier. Also it is very easy and 
computationally cheap to implement, especially after 
training [15]. 
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Table 1. Firing Pattern Features 

Feature Description 

CV Coefficient of Variation 

CVL Lower Coefficient of Variation 

CVL/CVU The ratio of lower and Upper CV 

PI Percentage of inconsistent IDIs 

LIDIR Lower IDI ratio 

1stSCorr First Coefficient of Serial Correlation 

Skewness 
A measure of symmetry of the IDI 
histogram 

IDrate MUP Identification rate 

FR-MCD Firing Rate mean consecutive difference 

IDI-MCD IDI mean consecutive difference 

 
A SVM was evaluated because it minimizes an upper 

bound on the generalization error, which has been shown to 
be superior to conventional learning algorithms (e.g. neural 
networks) that minimize the error on the training data [16]. 
A Gaussian radial basis function was used as kernel 
function. In training the SVM, the parameters of the kennel 
function and also the regularization parameter were 
determined experimentally via cross-validation. For the 
SVM implementation, the MATLAB toolbox provided by 
Canu and his-coworkers [17] was used.  

   PD [18], an associative rule-based classifier, was 
considered because of its ability to deal with nonlinear class 
distributions. Patterns discovered in training data and present 
in a feature vector to be classified are combined using 
information theory metrics for classification. A detailed 
description of how this methodology can be used as a 
classifier is provided by Hamilton-Wright and his co-
workers in [19]. 

E. Estimating the Level of MCE 

MCE rate is inversely related to the identification rate (ID 
rate). As MCE increases the IDrate decreases and vice versa. 
IDrate is defined as: 

 ������ �
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Experimental results show that the MCE level is highly 
correlated to the IDrate with a correlation coefficient of        
-0.96. Hence, the MCE level can be modeled by applying 
linear regression techniques to a set of data that represents 
the level of MCE in MUPTs versus their IDrate.  The 
following 1st order linear model was extracted using 
simulated data. 

����� �� � !1.086 ' ������ ( 1.024 

+, � 0.9403 

(2) 

Having this model, the MCE level of a MUPT can be 
estimated if its IDrate is available. 

III. RESULTS AND DISCUSSION 

Each part of the developed method was trained and tested 
using simulated MU firing patterns. The simulated MU 
firing patterns were created using a wide variety of 
parameters. Trains of 75 IDIs, which on average correspond 
to EMG signals of 7.5s duration, were initially and 
independently generated using Gaussian distributions with 
mean IDIs of 80, 90, 100, 110, or 120 ms and coefficient of 
variations (CVs) ranging from 10% to 30%. There are 20 
replicates for each (mean and CV) set of values. For 
development of the SMC, up to 5% FCE and from 0% to 
70% MCE was added to the true trains.  Each possible pair 
of the generated trains (different mean, STD, false and 
misclassification rate) was then merged. On the whole, 
90,000 single trains and 90,000 merged trains were 
generated. For development of the ERC, the FCE went from 
0 to 15%, including both acceptable and unacceptable 
values. The CV and MCE variations were the same as for 
the SMC training data set. There were 30 replicates for each 
(mean and CV) set of values, resulting in 35,000 valid trains 
(with acceptable FCE) and 35,000 invalid trains. 

The average accuracy (and standard deviation) of the 
three classifiers considered for the SMC is summarized in 
Table 2. Each row describes the confusion matrix of each 
classifier. In this Table, SasS stands for single trains 
classified as a single train and MasM stands for merged 
trains classified as a merged train. The first column in each 
misclassification error rate category shows the mean and 
standard deviation of the accuracy of the three classifiers for 
single MUPTs and the next column shows the mean and 
standard deviation of the accuracy of the three classifiers for 
merged MUPTs. These numbers were calculated by testing 
each classifier on ten different data sets. For each MCE rate, 
the best classifier(s) based on the t-test at the 5% significant 
level are indicated by '*'. As this table shows, the SVM 
classifier has the highest accuracy. 

Table 3 shows the results for the three ERCs considered. 
In this table, AasA stands for trains with acceptable FCE rate 
classified as a train with acceptable FCE rate and UasU 
stands for trains with unacceptable FCE rate classified as a 
train with unacceptable FCE rate. The first column in each 
MCE rate category shows the mean and standard deviation 
of the accuracy of the three classifiers for MUPTs with 
acceptable FCE rate and the next column show the mean and 
standard deviation of the accuracy of the three classifiers for 
MUPTs with unacceptable FCE rate. The accuracy of the 
classifiers was estimated by testing each classifier on ten 
different data sets. For each MCE rate, the best classifier(s) 
based on the t-test at the 5% significant level are indicated 
by '*'. As Table 3 shows, the SVM performs better than the 
FDA and PD classifiers in classifying AasA. On the other 
hand, the FDA classifier is the best at classifying MUPTs 
with unacceptable FCE rate correctly. On the whole, the 
FDA classifier is better than the SVM and PD classifiers for 
error rate classification, because of the following three 
reasons. First, in total the accuracy of the FDA classifier is  
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Table2. Mean and standard deviations of the accuracy of the three studied 
classifiers applied to simulated single or merged MUPTs (SasS: Single train 
classified as Single train, MasM: Merged train classified as Merged train). 

 Misclassification Error Rate 

  0% to 70% 60% to 70% 
Accuracy(%) SasS MasM SasS MasM 

FDA 98.8±0.1 99.2±0.1 98.0±0.2 93.9±0.4 

PD 99.3±0.1 99.1±0.1 99.3±0.1 99.7±0.3 

SVM 
*99.5±0.1 *99.5±0.1 *99.4±0.1 *95.7±0.2 

 
Table3.Mean and standard deviations of the accuracy of the three studied 
classifiers applied to simulated MUPTs having acceptable and unacceptable 
FCE rate (AasA: train with acceptable FCE rate classified as train with 
acceptable FCE rate, UasU: train with unacceptable FCE rate classified as 
train with unacceptable FCE rate). 

Misclassification Error Rate 

  0% to 50% 60% to 70% 
Accuracy(%) AasA UasU AasA UasU 

FDA 80.7±0.6 *87.3±0.5 71.9±2.1 *71.0±1.3 

PD 79.6±0.8 85.8±0.5 76.0±3.0 66.3±1.8 

SVM *82.7±0.6 85.5±0.6 *76.1±1.8 68.1±1.5 

 
greater than that of the SVM and PD classifiers. For the data 
with 0% to 70% MCE rate, which is the general case, the 
FDA classifier has an average accuracy of 81.72%, while the 
SVM and PD classifiers had accuracy of 80.96, and PD 
80.20, respectively. Second, the FDA classifier is faster than 
the SVM and PD classifiers. Third, the FDA classifier has 
the best performance in correctly classifying MUPTs with 
unacceptable FCE rate. It is clear that misclassifying an 
invalid MUPT as a valid train is more important than the 
inverse classification; the FDA classifier is therefore the best 
choice for error rate classification. 

The linear model developed for estimating the MCE level 
of a MUPT has been evaluated using simulated data 
described above. But here only the IDIs of single trains have 
been used. This data set was split into 10 subsets each 
containing 9000 single trains. The mean square error (MSE) 
between the true MCE level and that given by the model was 
calculated over each subset. The average of the resulting 10 
MSEs is considered as an estimation of the MSE. The model 
has an average MSE (and standard deviation) of 0.0036 
(1.8E-4), which is close to zero and shows that the model 
performs well in estimating the level of MCE in a MUPT. 

The high performance of the developed classifiers and the 
linear model in determining invalid trains encourages the use 
these methods for validating a MUPT. These methods can 
also be used during the decomposition of an EMG signal to 
make more accurate decisions when assigning detected 
MUPs and hence improving decomposition accuracy.  

IV. CONCLUSION 

A system consisting of two supervised classifier and a 
linear model has been presented for automated validation of 
a MUPT using its MU firing pattern information. The MU 
firing patterns of the given MUPT are represented by the 

characteristics of the IDI histogram of the MUPT. One of the 
developed classifiers, the SMC, determines whether a 
MUPT represents the firings of a single MU or the merged 
activity of more than one MU. The second classifier, the 
ERC, determines whether the level of FCE errors in a MUPT 
is acceptable or not. The linear model estimates the level of 
MCE in a MUPT to see whether it is acceptable or not. The 
results are encouraging and suggest that using these methods 
can improve EMG signal decomposition results, and can 
facilitate automatic validation of a MUPT, extracted from 
either a manually or automatically decomposed EMG signal.  
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