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Abstract— An emerging class of multi-channel neural
recording systems aims to simultaneously monitor the
activity of many neurons by miniaturizing and increasing
the number of recording channels. Vast volume of data
from the recording systems, however, presents a challenge
for processing and transmitting wirelessly. An on-chip
neural signal processor is needed for filtering uninterested
recording samples and performing spike sorting. This
paper presents a VLSI architecture of a neural signal
processor that can reliably detect spike via a nonlinear
energy operator, enhance spike signal over noise ratio by
a noise shaping filter, and select meaningful recording
samples for clustering by using informative samples. The
architecture is implemented in 90-nm CMOS process,
occupies 0.2 mm2, and consumes 0.5 mW of power.

I. INTRODUCTION

Recent advancements in neural signals recording sys-

tems [1] enable neuroscientists and clinicians capture

simultaneous activity of many neurons in the brain

for analysis and studies. By using implantable mi-

croelectromechanical systems (MEMS) multielectrode

arrays [2] placed in the cerebral cortex, neuroscientists

able to observe neurons communicate with one another

by way of electrical activity, which is known as action

potentials or simply as spikes.

The direct applications for these multi-channel neu-

ral recording and processing capable systems are the

enabling technologies for neuroprosthetic devices—

devices those can be controlled by thoughts. As reported

in literature, neural signals recorded from monkey’s

motor cortex were analyzed to build a relationship

between neural activities and intended limbs movements

then used to control a cursor on a computer screen

or a robotic arm [3]. The positive achievements of the

emerging technologies in brain-machine interface yearn

for feedback mechanisms enabling the brain perceive in-

formation through prosthetic sensors. Building a realistic

bionic arm [4] is an example research that incorporates
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multi-channel neural recording and stimulation technolo-

gies for actuating a robotic arm and perceiving senses

from the prosthetic sensors respectively.

To surmount the challenging requirements of an

implantable neuroprosthetic device that is low power,

small footprint, high performance signal processing and

limited wireless data rate great efforts are aimed at

developing hardware efficient algorithms and architec-

tures. On-chip signal processing can reduce the wireless

data transmission, provide real-time computing solu-

tions to complex spike sorting problem and enable a

closed-loop neuroprosthetic framework. In this paper,

we will briefly present our spike detection with noise

shaping filter and feature extraction algorithms using

informative samples along with a detail description of a

cost-effective hardware architecture. Section II reviews

our new spike sorting algorithm through each of the

processing steps. Section III describes the architecture

and hardware implementation. The results and future

works are presented in Section IV.

II. ALGORITHMS

Spike sorting is a process of assigning spikes to

different neurons. The process can be broken down into

three major steps as follow: spike detection, feature

extraction and clustering. In this section, we present our

spike detection and feature extraction algorithms those

are implemented in hardware as describe in Section III.

For the next step in spike sorting process, we briefly

discuss our new clustering algorithm that uses results

from feature extraction for grouping neurons.

A. Spike Detection

The purpose of spike detection is to identify a neural

spike from ambient noise or idle period of a neuron.

Unfortunately, signal-to-noise ratio (SNR) can be as low

as 0dB making it difficult to detect accurately with a

simple amplitude thresholding. A solution for this 0dB

SNR spike detection is to employ a nonlinear energy

operator filter [5].
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1) Nonlinear Energy Operator: NEO was originally

invented by Teager [6] and was used for the amplitude

and frequency demodulation and speed analysis. It com-

putes the energy function by using both the amplitude

and the frequency characteristics as formulated by (1).

Since a spike is typically characterized by localized high

frequency and instantaneous energy, NEO is an appropri-

ate candidate functions as a spike detector (because NEO

outputs a spike when x(n− 1) and x(n + 1) are small,

which represent a fast change from a high instantaneous

energy x2(n).) Although the equation is deceptively

simple, comprehensive formulation and interpretation

are complicated; a simplified formulation applied with

spike signals is presented in [7].

Ψ(x(n)) = x2(n)− x(n+1)x(n−1). (1)

By using NEO as a spike detector, it is possible to

detect 99.5% spikes as a worst case when used spike

data from waveclus [7].

B. Feature Extraction

Two goals of feature extraction are: to remove com-

monalities information between different spikes and em-

phasize their uniqueness. This is achievable by carefully

examining the neurons’ signatures and noise shaping

for feature extraction. Further data reduction is possible

through the selecting of a subset informative samples in

the waveforms are extracted as the features. The result

can be used for designing a frequency and noise shaping

filter.

1) Frequency and Noise Shaping Filter: The spikes

from neurons with similar ion channel populations

and distances to the recording electrode have similar

waveforms. A solution for sorting similar spikes is to

differentiate the neuronal geometry signatures. Assume

W1(t) and W2(t) are the geometry kernel functions of

two neurons and jm(τ) is the transmembrane current

profile, the difference between two spikes is:

∆V (t) =
∫

jm(τ) [W1(t − τ)−W2(t − τ)]dτ. (2)

A small waveform difference appears if
∫

(W1(t)−W2(t))dt ≈ 0. To differentiate the waveforms

we can rewrite (2) in the frequency domain as

F (∆V ) = F ( jm)F (W1 −W2), (3)

where F (·) denotes the Fourier transform. The previous

condition of
∫

(W1(t)−W2(t))dt ≈ 0 is equivalent to

F (W1 −W2) ≈ 0| f=0Hz, which suggests that the wave-

form difference caused by the geometry kernel functions

locate at a higher frequency spectrum. A frequency-

shaping filter that emphasizes on high frequency spec-

trum can help differentiate similar spikes but adversely

amplify high frequency thermal noise. A compromise

solution is to use derivative as the most effective

frequency-shaping filter that is linearly emphasized the

signal according to its spectrum. As a result, this noise

shaping technique serves as a filter that outputs the

derivative of the spike waveforms for differentiating

neurons’ signatures and as a bandpass filter.

2) Informative Samples: For a given M spikes with

each spike is represented by N samples, it is necessary

to extract subset samples with the most information as

features, informative samples, for reducing the complex-

ity in clustering. To quantify the information carried by

individual spike samples, a kernel density estimation

can be used as a non-parametric way of estimating

the probability density function of Nth sample of M

spikes [8]. Given x1,x2, · · · ,xM are independent and

identically distributed of a random variable, the kernel

density used to approximate the probability density

function is

f (x) =
1

hd ∑G

(

x− x j

h

)

, (4)

where G(·) is an arbitrary isotropic kernel with a convex

profile, h is a smoothing parameter called bandwidth and

d is a dimension of the data space. Under smoothing, a

small h, artifices modes in probability density function

while over smoothing, a large h, obscures most of the

structure of the data. One of the solutions is to estimate

local bandwidths with a pilot kernel density estimation

as

f0(xi) =
1

hd
0

∑
j 6=i

G

(

xi − x j

h0

)

, (5)

where h0 is an initial specified global bandwidth. Based

on the pilot density, local bandwidths are updated as

hxi
= h0

[

λ

f0(xi)

]0.5

(6)

where λ is a constant, which is assigned to be a

geometric mean of f (xi)|i=1,...,N . By using the updated

local bandwidths in (6), a density estimate is constructed

as

f (x) =
1

hd
x j

∑G

(

x− x j

hx j

)

. (7)

The result from f (x) are peaks and valleys those can be

used for partitioning spikes into clusters.
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Fig. 1. An integrated multi-channel neural recording system with
real-time neural signal processing.

C. Clustering

Based on the extracted features, clustering is used

for classifying spikes into different groups. The most

widely used clustering method for spike sorting is k-

means due to its low computation. Nevertheless, we

found it is unsatisfactory due to its sensitive to initial

seed selection and outliers, produce erroneous results

with irregularly shaped clusters, and it requires a number

of a-priori clusters because it is a parametric algorithm.

A solution to this deficiency is a non-parametric cluster-

ing algorithm we have developed based on mean shift

algorithm. The novel clustering algorithm is an energy

based evolving mean shift (EMS) algorithm with kernel

scope obtained through nearest neighbor search [7]. The

performance of EMS is superior to its related non-

parametric clustering mean shift and blur mean shift,

and the popular k-means. The hardware implementation

for EMS is, not presented in this paper, closely resemble

to finding the informative samples for feature extraction

due to the required computation for a non-parametric

density estimator.

III. SYSTEM ARCHITECTURE AND STRUCTURE

A system architecture for a typical multi-channel

neural recording is composed of analog front-ends for

signals amplifying and conditioning, and a sophisticated

neural signal processor for spike sorting as shown in

Fig. 1.

A. Neural Recording Front-End Interface

The analog front-end of a typical multi-channel neural

recording system is composed of pre-amplifiers, filters,

analog multiplexers, buffers and analog-to-digital (ADC)

converters. Power and chip area are often the most

important parameters in a design. In such system, each

ADC is shared by several recording channels via an

analog multiplexer as shown in Fig. 1. As a result,

the neural signal processor for spike sorting needs a

Memory
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Alignment

Aligned

Extraction

Engine

Fig. 2. An architecture of a neural signal processor with a NEO
based spike detection and a feature extraction engine using informative
samples.

large memory input buffer for rearranging channel-

interleaving spike samples.

B. Spike Detection Architecture

Fig. 2 depicts an architecture of the spike detection

implemented using NEO algorithm with a noise shaping

filter and a peak alignment. The input is a serial stream

of 9-bit recording samples from the ADC [1], however,

only eight bits are used to reduce the area and computing

power. The output from the spike detection process is

an array of filtered spikes those are aligned according

to their peaks. These aligned spikes are used in the

feature extraction step for selecting a subset of samples,

informative samples, for clustering.

Three major processing units for a spike detection

step are: a NEO spike detector, a noise shaping filter,

and a peak alignment. NEO spike detector calculates

the energy from the input recording samples according

to (1) and identifies the peak sample within a 5-sample

window. A sample that indicates a neuron firing is when

its energy exceeds the programmed threshold and it is

the peak sample. Its time-index is saved for spike align-

ment; and it triggers the convolution process of a 32-tap

filter. Both the 32-tap filter coefficients and threshold

value are reprogrammable via the system controller. The

spike alignment stores and aligns the middle 32 samples

output of 32-tap filter to memory for a spike feature

extraction engine.

C. Feature Extraction Engine

The feature extraction engine is structurally built to

compute the information carried by the spike samples as

shown in Fig. 3. It comprises two expensive operators

such as divide and square, multiplexers, and storage

elements. The overall area consumption due to combi-

national logic, however, is smaller than the required area

for memory.

980



Accumulator

Divider

Spikes

System Controller Logic

Extracted

Smoothing Parameters

−

Bandwidth
Update

x
2

Aligned

Samples

Memory Memory
|x|

h0

Features

x

xj

Fig. 3. An architecture of a feature extraction engine using informa-
tive samples.

The core of this engine is employed to compute the

kernel density algorithm, which estimates the probability

density function of the spikes’ samples. To simplify

the kernel density computation, an isotropic kernel G(·)
from (4) is implemented as a square function. Note the

training process for estimating smoothing parameters

in (5) and the actual kernel density estimation in (7)

is similar, the same hardware can be used with the

help of a multiplexer. The top multiplexer is used for

selecting between the initial h0 and the estimated h j

local smoothing parameters. While, the other multiplexer

shares a divider unit between calculating the G(·) term

and the final f (x). To save more area and power, update

of the smooth parameters as described in (6) can be

offload to a general purpose microprocessor since the

smoothing parameters do not change often for a given

recording. The system controller monitors the inputs x

and x j to ensure proper results can be included in the

accumulator. The results from computing the probability

density function are stored in a SRAM module, named

as extracted features memory, that has the same amount

of storage space as the input SRAM module for the

aligned spikes samples memory.

IV. RESULTS AND FUTURE WORKS

A neural signal processor including both the NEO-

based spike detection and feature extraction using in-

formative samples is implemented in a VLSI CMOS

90nm processor. Table I shows a breakdown of area and

power consumptions for each of the modules. The spike

detection together with a noise shaping filter use the

most area and power. However, the actual contribution

to this is a 32-tap filter, which occupies 78% of the

area. The SRAM modules for storing 100 spikes, which

each of the spike is composed of 32 samples occupy

TABLE I

A 10MHZ NEURAL SIGNAL PROCESSOR SYNTHESIZED IN 90NM

TECHNOLOGY AT 1 V.

Components Listing Area Time Power

µm2 cycles µW

Spike Detection & NSF 75,712 3,500 460
Aligned Spikes Memory 50,581 — 15
Feature Extraction Engine 3,913 10,240,000 33
Smoothing Parameters 12,978 — 10
Extracted Features Memory 50,581 — 15

Total 193,765 10,243,500 533

more than half of the total chip area. The storage for

the smoothing parameters in this design requires only

100 8-bit words, however, the minimum allowable by a

memory compiler is 256 words. Much of the latency is

due to the feature extraction engine because the kernel

density estimation has a complexity of Θ(n2). This delay

can be shorten by increasing the level of parallelism and

clock rate in the feature extraction engine.

The next step is to design an architecture for the EMS

clustering algorithm and incorporate with a neural signal

processor. A challenge will be finding the trade-offs be-

tween the accuracy, area, computing latency and power.

In addition, the complexity of the EMS algorithm is

Θ(dn logn) where d is the dimension of the input feature

score. As a result, a principle component analysis step

is needed to reduce the dimensionality for a tractable

hardware implementation.
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