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Abstract— We apply task-based evaluation
methods to image-reconstruction in circular
cone-beam CT. The particular task considered
is that of detection of a micro-calcification
of known location in a known background;
namely a signal-known-exactly/background-
known-exactly (SKE/BKE) detection task. The
image-reconstruction algorithms are evaluated
based on efficiency for detection. This task-
based metric can be applied to any linear image-
reconstruction algorithm, such as the FDK algo-
rithm or other more recent approximate meth-
ods for image-reconstruction in circular, cone-
beam CT.

I. Introduction

Evaluation of CT image-reconstruction algo-
rithms is a difficult task. For example, resolution
properties are difficult to quantify in a meaning-
ful way, because they tend to be non-uniform in
the imaging volume. On the other hand, complete
analysis methods, such as the cross-talk matrix,
are unwieldy due to the large size of volume images
(for a typical 5003 voxel image the cross-talk ma-
trix has 5006 entries). Evaluation metrics assess-
ing the noise properties of cone-beam CT image-
reconstruction run into similar issues.

Though difficult, objective assessment of image-
reconstruction in CT is becoming an important
issue as CT is being developed for screening and
for dedicated imaging systems such as breast CT.
For screening applications, CT would be employed
repeatedly on a nominally healthy, yet high-risk
population; thus x-ray dose should be kept to a
bare minimum. For dedicated scanning systems, a
limited set of imaging tasks will be performed with
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the imaging device; thus it makes sense to evalu-
ate the imaging system components based on these
tasks and tailor the system to perform well on its
specific use. To this end, we have been working to
apply task-based metrics, as described in chapters
13 and 14 of “Foundations of Image Science” by
Barrett and Myers [1], to the evaluation of cone-
beam CT image reconstruction algorithms.

As an example for the application of task-based
assessment, we consider circular, cone-beam CT
in dedicated breast scanning. We are interested
in evaluating and optimizing system components,
specifically image-reconstruction, thus we model a
task that tests the limits of the system. For breast
CT, a logical choice of task is micro-calcification
detection. This task challenges resolution and
noise properties of the breast CT system. The
task-based metric is based on the performance
of the linear “ideal-observer’s”, or Hotelling ob-
server’s, ability to distinguish between two situa-
tions: signal-present and signal-absent. To eval-
uate image-reconstruction we use the efficiency
[2], [3], which takes the ratio of Hotelling per-
formance in the reconstructed images to that of
the pre-processed projection data. By this met-
ric, the best performance for a linear image-
reconstruction algorithm is an efficiency of 1.0,
but in general the efficiency will be less than 1.0.
In other words, linear operations, such as image-
reconstruction algorithms considered, can only de-
grade the Hotelling observer’s ability to distin-
guish between the signal-present and signal-absent
hypotheses.

In this work, we present the method for evaluat-
ing Hotelling observer efficiency in cone-beam CT.
Its application to evaluating various algorithms in
circular, cone-beam CT will be presented at the
meeting.
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II. Cone-beam CT data model and

Hotelling observer computation

We introduce the data model for cone-beam CT,
describing both hypotheses for the computation
of the Hotelling observer on the SKE/BKE detec-
tion task. We then discuss how to evaluate the
Hotelling observer.

The data model for the CT system relates the
data vector g to the object function f(~r):

gi =

∫

∞

−∞

dlf
(

s̃i + lθ̂i

)

+ ni where i ∈ [1,N],

(1)
where gi and ni are random variables. The data
measurement gi is the line integral over f(~r) along
the ith ray defined by the x-ray source location
si and ray direction θ̂i with noise ni added. A
reasonable approximation of the CT noise model is
that the measurements are independent, and they
follow a Gaussian distribution with variance:

(Kg)i,i = α < gi > +β. (2)

The covariance of the sinogram, Kg, is assumed
diagonal, where the diagonal elements have a con-
stant background noise level β plus a component
proportional to the data mean < gi >. To gen-
erate data corresponding to the signal-absent hy-
pothesis the object function f(~r) is taken to be the
background bg. For example, in breast CT the ob-
ject function could be computer-simulated breast
model. For the signal-present hypothesis, the ob-
ject function, bg + sg, is the same background plus
a model of a micro-calcification with known shape
and location. In evaluating the Hotelling observer,
we assume the weak-signal limit, where the noise
model is assumed to be the same for both hypoth-
esis.

The data model corresponding to each hypoth-
esis include a random component, giving only a
probability distribution for each case. Given a
particular data realization, the observer is charged
with the task of determining which hypothesis is
correct based on the one data set. The Hotelling
observer multiplies the data set by a template,

w
(hot)
g , that maximizes separability between the

two probability distributions. For the above data
model, the Hotelling template is straight-forward

to compute:

w(hot)
g = sg · (Kg)

−1. (3)

Because the noise model includes only a diago-
nal covariance matrix, Eq. (3) can be computed
directly. The Hotelling observer performance is
evaluated by computing the signal-to-noise (SNR)
ratio

SNR2
g = w(hot)

g · sg. (4)

In order to obtain the efficiency e, we next need
to find the Hotelling observer performance in the
reconstructed images.

Because the data model is random, so will be
the reconstructed images. Again, the Hotelling ob-
server will employ a template that maximizes sep-
arability between the reconstruction of both hy-
pothesis. As we are considering only linear algo-
rithms and, in practice, the algorithms transform
a discrete data set to a discrete image, the image-
reconstruction operator can be view as a large ma-
trix A. The reconstructed image y is obtained by

y = A · g.

Linear transforms applied to Gaussian distribu-
tions yield another Gaussian distribution. The
means for the signal-absent and signal-present dis-
tributions are, respectively A · bg and A · (bg + sg).
The covariance matrix for both hypothesis will
again be the same for the reconstructed images
because of the weak signal limit, and it is given by

Ky = A · Kg · A
T . (5)

Direct computation of this matrix is impractical
for CT, because it is most certainly non-diagonal
and it can be as large as 109

× 109. The Hotelling

template w
(hot)
y can nevertheless be accurately

computed by using iterative algorithms such as
conjugate gradients to solve the following linear
system

Ky · w
(hot)
y = sy

(

A · Kg · A
T
)

· w(hot)
y = Asg (6)

for the template. After computing this template
an SNR in the reconstructed images can be com-
puted by

SNR2
y = w(hot)

y · sy. (7)
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With both SNRs in hand the efficiency of the im-
age reconstruction algorithm becomes

e = SNR2
y/SNR2

g. (8)

III. application to image-reconstruction

algorithms for cone-beam CT

In general, the efficiency will be less than one
because the reconstruction operator A is not in-
vertible. If the size of the reconstructed image is
smaller than that of the data, then it is clear that
A is not invertible. Even when the dimensions are
not reduced in going to the reconstructed image, A
is not in general invertible. The reason for this is
that only a subset of possible data sets correspond
to the projection of an actual object, and data with
inconsistencies due to, for example, noise will not
correspond to any object function. Any image re-
construction algorithm is then implicitly project-
ing a given data set to a data set consistent with
the X-ray transform. Different algorithms will per-
form this projection differently. As a result, one
can expect also different efficiencies.

As described above the efficiency depends on a
particular background and signal. Thus, to char-
acterize the image-reconstruction efficiency for a
given algorithm a realistic background should be
modeled in terms of geometry and attenuation
value. The modeled micro-calcification signal
should have dimensions near the limit of what the
imaging system can resolve. An efficiency map can
then be generated by moving the signal to various
places in the imaging volume.

IV. Summary

We have developed a task-based image quality
metric for circular cone-beam CT that can ob-
jectively assess image-reconstruction algorithms in
circular, cone-beam CT. The application of this
metric to various algorithms such as FDK will be
shown at the meeting.
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