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Abstract— Studying intracellular dynamics is of major im-
portance for understanding healthy life at the molecular level
and for developing drugs to target disease processes. One
of the key technologies to enable this research is the au-
tomated tracking and motion analysis of subcellular objects
in microscopy image sequences. Contrary to common frame-
by-frame tracking methods, two alternative approaches have
been proposed recently, based on either Bayesian estimation
or space-time segmentation, which better exploit the available
spatiotemporal information. In this paper, we propose to
combine the power of both approaches, and develop a new
probabilistic method to segment the traces of the moving objects
in kymograph representations of the image data. It is based
on variable-rate particle filtering and uses multiscale trend
analysis for estimation of the relevant kinematic parameters
using the extracted traces. Experiments on realistic synthetically
generated images as well as on real biological image data
demonstrate the improved potential of the new method for the
analysis of microtubule dynamics in vitro.

I. INTRODUCTION

Subcellular motion analysis plays a major role in un-

derstanding fundamental dynamical processes occurring in

biological cells. Even though many intracellular interaction

mechanisms are well understood these days, many questions

still remain unanswered. In some cases, where the analysis

in living cells (in vivo) is confounded by other intracellular

processes, it makes sense to study the intracellular dynamics

in vitro, where the influence of other structures or processes

is removed, reduced, or known [1], [2].

Nowadays, intracellular dynamics is usually visualized

using advanced fluorescence microscopy imaging techniques,

where the objects of interest are labeled with fluorescent

proteins [3], [4]. Alternatively, non-fluorescence based tech-

niques, such as phase contrast (PC) or differential inter-

ference contrast (DIC) microscopy can sometimes be used,

which do not require labeling [3]. In either case, the optical

resolution of the microscope is much lower (on the order of

100 nm) than the size of the objects of interest (on the order

of nanometers), causing the latter to be imaged as blurred

spots due to diffraction. The quality of the images is further

reduced by high levels of measurement noise [4]. Both types

of distortions contribute to the ambiguity of the data, making

automated quantitative image analysis very difficult.
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In time-lapse microscopy, where hundreds to thousands

of 2D or 3D images are acquired sequentially in time, the

main task is to track the objects of interest (proteins, vesicles,

microtubules, etc.) and compute relevant motion parameters

from the extracted trajectories. In practice, manual tracking

is labor intensive and poorly reproducible, and only a small

fraction of the data can be analyzed this way. The vast

majority of automatic tracking methods [5]–[8] developed in

this field consist of two stages: detection of objects of inter-

est (independently in each frame), and linking of detected

objects from frame to frame (solving the correspondence

problem). Since the methods employed for the first stage

operate on data with low signal-to-noise ratio (SNR), the

linking procedure in the second stage is faced with either

many false positives (noise classified as objects) or false

negatives (misdetection of actually present objects).

Contrary to these two-stage tracking methods, which typ-

ically use only very few neighboring frames to address the

correspondence problem, methods that make better use of the

available temporal information usually show better results.

Such trackers are either built within a Bayesian frame-

work [9], which in any frame uses all available temporal

information up to that frame, or they consider the 2D+t or

3D+t image data as one spatiotemporal 3D or 4D image,

respectively, and translate the estimation of trajectories into

a segmentation of spatiotemporal structures [10].

In this paper, we propose to combine the power of the lat-

ter two approaches, and develop a variable-rate particle filter-

ing method that implements the idea of Bayesian estimation

for tracing spatiotemporal structures formed by transforming

the original time-lapse microscopy image data into a special

type of spatiotemporal representation: kymographs [11]. This

novel, combined approach results in more accurate extraction

of the spatiotemporal structures (edge-like image structures

in our case) compared to particle filtering applied directly to

the image sequences on a per-frame basis [9].

II. METHODS

A. Microtubule Dynamics

Microtubules (MTs) are polarized tubular filaments (diam-

eter ∼25 nm) composed of α/β-tubulin heterodimers that

play a major role in several intracellular processes such

as cell division, internal cell organization, and intracellular

transport. To understand the specific interactions between

regulatory proteins and microtubules is of great interest to

biologists. Misregulation of MT dynamics, for example, can

lead to erroneous mitosis, which is a characteristic feature

in neurodegenerative diseases.
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Fig. 1. (a) Example of a DIC microscopy image. Microtubule nucleation
initiates from stable tubulin “seeds”. In the experiments, “observation lines”
are drawn along MT bodies to construct kymographs. (b) Example of
a kymograph obtained from the DIC microscopy images, showing the
dynamics of both MT ends.

The dynamics of MTs is highly regulated, both spatially

and temporally, by a wide family of MT associated proteins

(MAPs) [12]. MTs frequently switch between growth and

shrinkage, a feature called dynamic instability [13]. Growth

and shrinkage proceed with nearly constant velocities, where

the shrinkage velocity, ν−, is usually much higher than the

growth velocity ν+. The growth velocity in vivo can be up

to 10 times faster than in vitro. Two other important events

that characterize dynamic instability are rescue (switching

from shrinkage to growth) and catastrophe (switching from

growth to shrinkage) [13]. In practice, the analysis of MT

dynamics includes estimation of ν+, ν−, and the rescue and

catastrophe frequencies, fres and fcat.

Recent studies reveal a special class of MAPs, plus-

end-tracking proteins (+TIPs), that are able to accumulate

at MT growing ends [12]. One way to understand the

mechanism employed by individual +TIPs and the molecular

mechanisms underlying their functions is by measuring the

distribution and displacement of +TIPs in time. In vivo, it

is extremely hard to decouple the effect of other regulators

while studying +TIPs influence on MT dynamics. The ad-

vantage of in vitro investigation is the minimal environment

in which the influence of various +TIPs can be dissected

individually. However, due to lack of robust and accurate

automatic methods, the manual analysis usually is a labor

intensive procedure which very likely leads to user bias and

loss of important information.

B. Imaging Technique and Kymographs

In our studies, the dynamic behavior of MTs is imaged

using DIC microscopy [3], [4], which is effectively used for

biological specimens that cannot be visualized with sufficient

contrast using bright-field microscopy. The resulting images

(see Fig. 1(a) for an example) depict objects as black/white

shadows on a gray background with good resolution and

clarity. The advantages of DIC over fluorescence microscopy

is that the samples do not have to be stained. As a result,

the possible influence of fluorescent proteins is also elimi-

nated. The main limitation of this imaging technique is its

requirement for a thin and transparent sample of fairly similar

refractive index to its surroundings.

Automatic analysis of MT behavior in vitro using time-

lapse DIC microscopy requires tracking of the plus-end of

each MT so as to obtain 2D paths in the image plane, from

which the parameters of interest (velocity and frequency

estimates) can be computed. This is hampered by the usually

poor image quality, caused by high (Poisson) noise levels,

blurring of the subresolution MT-structures, and the nonlin-

ear image formation process in DIC microscopy, as a result

of which the objects (especially the MT tips) cannot be easily

modeled by appearance models, as in the case of fluorescence

microscopy imaging [9].

To better exploit the temporal information in the data,

contrary to direct frame-by-frame tracking, we propose to

base the motion parameter estimation on a transformation

of the data that is more amenable to multiscale analysis.

Specifically, we propose to use a kymograph representa-

tion [11] for each MT, constructed by defining (manually

or automatically) an “observation line” L (Fig. 1(a)) in the

image sequence along the MT body. Image intensity values

are then sampled equidistantly along L, yielding a vector of

“measurements” at time t, Jt = {Jt(j) : j = 1, . . . , Y },

where Y is the number of samples for the selected MT in

every image frame. The resulting kymograph (see Fig. 1(b)

for an example), I(t, y) = {Jt : t = 1, . . . , T}, is the

collection of measurement vectors, where every column t
contains the measurements Jt as pixel values, and T is the

number of frames in the image sequence.

To estimate the kinematic parameters of interest from the

kymographs, the edge location y(t) (corresponding to the MT

tip) must be accurately extracted. Since the instant velocity

ν at any time t′ is estimated as ν = (dy/dt)t=t′ = tan (ϕ),
with ϕ the angle between the time axis and the tangent to

y(t) at t = t′, small errors in the angle estimates may lead to

large velocity estimation errors (and due to the nonlinearity

of the tangent, the closer ϕ is to 90 degrees, the larger the

errors). Here, frequently used edge detectors such as the gra-

dient magnitude or Canny’s method produce unsatisfactory

results (see also Fig. 2(b)), due to noise amplification (by

differentiation) or edge blurring (by regularization). Instead,

we propose to use edge model fitting using particle filtering

(PF) methods [14]. The PF can be exploited to reduce the

overload of fitting the model in every pixel position, by

incorporating information about the edge model, the image

noise distribution, and the probability of finding the edge in

the neighborhood of a pixel.

C. Variable-Rate Particle Filtering

Particle filters implement the concept of Bayesian esti-

mation, where at each time t a system state xt is esti-

mated from previous states, noisy measurements zt, and

prior knowledge about the underlying processes in terms

of probability density functions (pdf): the state transition

p(xt|xt−1) and the observation model p(zt|xt) [14]. The

solution to the state estimation problem is the posterior

pdf p(x0:t|z0:t), where x0:t = {x0, . . . ,xt} and z0:t =
{z0, . . . , zt}, which in general can be found using sequential

Monte Carlo (MC) methods [14], where the posterior pdf is

approximated with a set of Ns MC samples (“particles”),

{x
(i)
0:t, w

(i)
t }Ns

i=1, as p(x0:t|z0:t) =
∑Ns

i=1 w
(i)
t δ(x0:t − x

(i)
0:t).

Each x
(i)
0:t describes a possible state sequence (path) and the

weight w
(i)
t indicates the path probability. The solution using

PF is given by a recursive procedure that predicts the state

1013



from time t−1 to t and updates the weights based on newly

arrived measurements zt as

x
(i)
t ∼ p(xt|x

(i)
t−1) and w

(i)
t ∝ w

(i)
t−1p(zt|x

(i)
t ), (1)

i = 1, . . . , Ns. The minimum mean square error (MMSE) or

maximum a posteriori (MAP) estimators of the state can be

easily obtained from p(x0:t|z0:t) [14].

Commonly, the state sampling rate is determined by the

rate at which the measurements arrive. In our application,

however, the MT dynamics is characterized by prolonged

periods of smoothness (growth or shrinkage) with infrequent

sharp changes (rescue or catastrophe). This allows a much

more parsimonious representation of the MT tip trajectory:

more state points are allocated in regions of rapid change

and relatively fewer points in smoother sections. This data-

adaptive state sampling is possible using recently introduced

variable-rate particle filtering (VRPF) [15]. Within the VRPF

framework, the state is defined as xk = (θk, τk), where

k ∈ N is a discrete state index, τk ∈ R
+ > τk−1 is the arrival

time for the state k, and θk is the vector of variables neces-

sary to parametrize the object state. In tracking applications,

θk may include position, velocity, heading, etc. In our case,

we define θk = (yk, vk), where yk is the edge position at

time τk along the observation line L, and vk = (dy/dt)t=τk

describes the edge direction at t = τk in the image I(t, y).
Similar to standard PF, the state sequence is assumed to be

a Markov process, so the successive states are independently

generated with increasing k according to

xk∼p(xk|xk−1)=pθ(θk|θk−1, τk, τk−1)pτ (τk|θk−1, τk−1).

In our implementation, the states xk for the prediction-update

procedure (1) are sampled as

τk − τk−1 ∼ U[τ0,τ1], vk ∼ p(vk|vk−1), (2)

and yk = yk−1 + vk−1(τk − τk−1), where U[a,b] denotes the

uniform distribution in the range [a, b]. The sampling of the

new states xk at time t is performed only for those particles

x
(i)
k−1 for which τ

(i)
k−1 ≤ t, which also reduces the computa-

tional load compared to the standard PF implementation.

The crucial point in applying the VRPF framework is to

efficiently model the prior p(vk|vk−1) to catch the rapid

changes in edge orientation. Considering three possible mo-

tion types (growth, shrinkage, no activity), we define the

following prior for the velocity component vk:

p(vk|vk−1) =


















(1 − a)N (vk−1, σ
2
ν+) + aN (ν−, σ2

ν−) for vk−1 > Vth,

(1 − a)N (vk−1, σ
2
ν−)+

a
2

(

N (ν+, σ2
ν+) + N (0, σ2

ν0)
)

for vk−1 <−Vth,

(1 − a)N (vk−1, σ
2
ν+) + aN (ν+, σ2

ν+) for |vk−1|< Vth,

where 0 < a < 1 is a weighting parameter that balances

the mixture components corresponding to the different types

of motion in the transition pdf (in tracking applications, a
corresponds to the probability of object/target birth). The

variances for the velocity estimates (σ2
ν+ , σ2

ν− , σ2
ν0) account

for possible small deviations in the measured velocities from

the average values. The thresholding at Vth determines which

prior is used but does not imply that at every time point we

assume that the system evolves according to only one motion

model. Due to the probabilistic nature of the VRPF, at every

time step the posterior pdf describes the probability to find

the MT in each of the three states.

To measure the likelihood of edge existence at some image

position, with the orientation defined by the velocity com-

ponent vk−1 of the state vector, average intensity values are

computed for both (black and white) rectangles (see Fig. 2),

µB and µF , corresponding to the background and foreground

intensities. The likelihood is defined as p(zt|xk−1,xk) ∝

exp (µF − µB), if µF − µB > 0 and is zero otherwise,

where τk−1 ≤ t < τk. It means that sharp edges are

favored over smoother noisy intensity transitions. The width

d, which also controls the sensitivity of the observation

model to the edge location, should be specified. The length

lv = (τk − τk−1)
√

1 + v2
k−1 is automatically defined by the

time sampling functions (2). The variety of lv caused by

the sampling (2) adds some multiresolution property to the

analysis because the edge presence at some image point is

now analyzed on several different scales.

In order to derive the MMSE estimator, the principle of

fixed-lag smoothing is used, where the estimation of the edge

position at time t is delayed until the measurements at time

t + ∆t will be processed and the posterior updated, which

greatly improves the final results.

D. Multiscale Trend Analysis

Having the estimated edge ŷt after applying the VRPF,

we employ multiscale trend analysis (MTA) [16] in order

to automatically compute all the parameters of interest. At

this stage of our analysis, it is necessary to detect all the

catastrophe and rescue events and split the live history ŷt

into parts of growth and shrinkage, possibly separated by

stages of no activity.

III. EXPERIMENTAL RESULTS

A. Evaluation on Synthetic Data

The performance of the proposed VRPF-based method

was evaluated using synthetic images as well as real data

showing MT dynamics in vitro. The synthetically generated

images (see Fig. 2(a)) enabled us to explore the accuracy

and robustness of the method depending on the image

quality (different SNR levels) and the parameter values that

model the MT dynamics. The proposed VRPF method was

evaluated using 20 synthetically generated images, where

the ground truth values were fixed to ν0 = 0, ν+ = 0.5,

ν− = −3, σ2
ν0 = σ2

ν− = σ2
ν+ = 0.005, and fres = 0.018,

fcat = 0.009, which are representative of real data. The

velocity estimates are given in pixels/frame. Since the ground

truth was available in these experiments, the accuracy of

extracting the edges was evaluated using the root mean

square error (RMSE). The results of applying MTA for

kinematic parameter estimation based on the edges extracted

using the VRPF are shown in Table I.
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Fig. 2. Examples of the synthetic images for different SNR levels used in
the experiments (a), for which the gradient images (b) are computed using
Gaussian derivatives at a smoothing scale of 3 pixels.

TABLE I

RESULTS OF PARAMETER ESTIMATION USING THE VRPF AND MTA.

SNR RMSE ν+± sd ν−± sd fcat fres

0.4 2.54 0.47±0.07 -2.41±0.79 0.011 0.019
0.6 1.43 0.50±0.03 -3.03±0.61 0.009 0.018
0.8 1.23 0.49±0.02 -2.91±0.62 0.009 0.017
1.0 1.15 0.50±0.01 -2.96±0.37 0.009 0.017

(a)

200 400 600 800

time [s]

2
3
4
5
6
7
8
9 VRPF

ŷ(t)

(b)

Fig. 3. Example of a kymograph generated in the experiments on real DIC
microscopy image data with SNR ≈ 1 (a) and the results of applying the
proposed VRPF (b).

B. Evaluation on Real Data

For the validation on real data we collected three repre-

sentative DIC microscopy image sequences acquired to study

the influence of different concentrations of EB3 (end-binding

protein 3) and GFP-EB3 (EB3 fused to the green fluorescent

protein) on the MT growth and shrinkage velocities (ν+ and

ν−) and the catastrophe rate (fcat). The sequences were taken

from experiments with MT nucleation from stable tubulin

seeds, where 15µM of tubulin was added (Experiment I), or,

in addition, 1µM of EB3 (Experiment II), or 1µM of GFP-

EB3 (Experiment III) [2]. They consisted of about 1000-

1200 frames (one per second) of size 700 × 500 pixels (of

size 86 × 86 nm2). To estimate the parameters of interest,

for each experiment 10 kymographs were constructed and

analyzed manually and using the proposed VRPF method.

An example of edge extraction using VRPF in real data is

shown in Fig. 3. The obtained estimates (ν+, ν−, fcat) for Ex-

periment I (0.51µm/min, -9.72µm/min, 0.002), Experiment II

(2.52µm/min, -14.65µm/min, 0.014), and Experiment III

(2.58µm/min, -14.03µm/min, 0.014) are in agreement with

recently published results [2] obtained manually.

IV. CONCLUSIONS

In this paper we have proposed a novel approach for the

automatic analysis of microtubule dynamics in vitro imaged

using time-lapse DIC microscopy. The task of tracking

microtubule tips on a per-frame basis in the noisy images

is replaced by segmentation of spatiotemporal structures

(edges in our case) in space-time images (kymographs). For

the extraction of these structures from the kymographs and

estimation of the important kinematic parameters, we have

proposed a variable-rate particle filtering method, which is

built within a Bayesian framework and optimally combines

the measurements and prior knowledge about the underlying

processes, in combination with subsequent multiscale trend

analysis. The results of quantitative evaluation of the pro-

posed method in realistic synthetic images as well as in real

biological data demonstrate that the method is capable of

accurate estimation of the parameters characterizing micro-

tubule dynamics and suggest that the method may replace

laborious manual procedures.
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