
  

  

Abstract—Protein subcellular location is one of the most 
important determinants of protein function during cellular 
processes. Changes in protein behavior during the cell cycle are 
expected to be involved in cellular reprogramming during 
disease and development, and there is therefore a critical need 
to understand cell-cycle dependent variation in protein 
localization which may be related to aberrant pathway activity. 
With this goal, it would be useful to have an automated method 
that can be applied on a proteomic scale to identify candidate 
proteins showing cell-cycle dependent variation of location.  
Fluorescence microscopy, and especially automated, high-
throughput microscopy, can provide images for tens of 
thousands of fluorescently-tagged proteins for this purpose.  
Previous work on analysis of cell cycle variation has 
traditionally relied on obtaining time-series images over an 
entire cell cycle; these methods are not applicable to the single 
time point images that are much easier to obtain on a large 
scale.  Hence a method that can infer cell cycle-dependence of 
proteins from asynchronous, static cell images would be 
preferable. In this work, we demonstrate such a method that 
can associate protein pattern variation in static images with cell 
cycle progression. We additionally show that a one-dimensional 
parameterization of cell cycle progression and protein feature 
pattern is sufficient to infer association between localization 
and cell cycle. 

I. INTRODUCTION 

he study of subcellular location via imaging is a 
critical aspect of proteomics that complements 

studies of sequence, structure, binding interactions, and 
biochemical activity. Automated determination of protein 
subcellular localization from microscope images has not 
only been demonstrated to be feasible for the major 
organelles [1] but can outperform visual analysis [2].  
Protein location varies with numerous factors including cell 
type, microenvironment, treatment conditions and time. 
Temporal effects can occur in many places and at many 
scales, from the millisecond to the day, but one of the most 
obvious and important temporal processes is the cell cycle. 
Many proteins interact in orchestrating growth, DNA 
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replication, and cellular division. 
The problem of identifying cell-cycle dependent variation 

in protein localization has been a significant focus of 
previous work [3-5]. As aberrations in protein localization 
are invariably related to reprogrammed cell behavior, 
determining changes in trafficking of proteins through 
various organelles during the cell cycle can aid 
understanding of the dynamics of disease and development. 
An automated method to identify those proteins that might 
potentially exhibit a cell-cycle dependent localization would 
be a very useful prospective tool for detailed further 
investigation of their role in various biological processes. 

Previous work examining the cell cycle dependence of 
protein location usually (1) discretizes the cell cycle into a 
set of phases (e.g., G0/G1, S, G2, M) or (2) artificially 
synchronizes the cells under examination; both methods 
attempt thereby to boost correlative effects observed. Sigal 
et al. 2006 [3] addressed these limitations by capturing time-
lapse images and synchronizing them in silico (i.e., aligning 
profiles of nuclear intensity of different cells across time). 
However, time-lapse images can be more difficult to obtain 
than single images of cells because many microscopes do 
not maintain a viable environment for the cells they image 
(e.g., cells die after some time, and even while alive they are 
not under constant conditions). Furthermore, repeated 
excitation of dyes for fluorescence imaging causes 
photobleaching, reducing signal and leading to toxic 
chemical changes (phototoxicity), further perturbing cells. 
Lower exposure times reduce these effects but attenuate 
signal. Time-series images have another limitation: imaging 
more cells means the microscope takes longer between 
frames to revisit a particular cell, potentially compromising 
cell tracking algorithms. A method using unsynchronized 
cells with single-image capture would have the advantages 
of avoiding repeated exposure to fluorescence excitation 
(permitting higher-energy exposure to obtain better signal) 
and fewer environment viability requirements. 

Thus, when imaging proteins in an asynchronous 
population of cells at a single time point, there is a need to 
resolve which proteins show a dependence on the cell cycle 
and which proteins are static across the cell cycle. This paper 
proposes a method to infer the association between protein 
location patterns in unsynchronized static cell images and 
cell cycle progression in an unsupervised manner, i.e., 
without explicit knowledge of the cell cycle stage for a 
particular cell. 

In this work, we consider images of cells, specifically of 
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their nuclei and of the distribution of a particular tagged 
protein. Using certain statistics computed on the nuclear 
image ("nuclear features") as a representation of cell-cycle 
phase, we infer a one-dimensional statistical manifold 
(parameterized by γ1) for progression in cell cycle. 
Observing its relationship with features extracted from 
protein images allows us to identify those protein image 
features that correlate strongly with cell-cycle progression. 
The subspace of all such protein features uniquely identifies 
another statistical manifold along which proteins may show 
a variation in subcellular localization (which may or may not 
be associated with the cell cycle). We further demonstrate 
that variation in the protein distribution due to the cell cycle 
can be detected and used to rank proteins by how much they 
vary in this manner. We conclude that this is a feasible task 
and discuss possible improvements. 

II. METHODS 

A. Image Dataset 
We used two datasets for our experiments.  The first is a 

single time-series of images of HeLa cells expressing RFP-
labeled histone H2B as described previously [6]. Images 
were taken every half hour with a fixed exposure time, and 
environmental conditions were kept stable at 37°C and 5% 
CO2.  This dataset was used for validating our proposed 
method.  The second data set consists of single exposures of 
unsynchronized NIH 3T3 cells expressing fluorescently-
tagged proteins, collected as described previously [7]. Our 
RandTag project generates and images thousands of clones 
that are CD-tagged to express different GFP fusion proteins 
under native regulation [8]. We used images for sixteen of 
these clones in this paper.  For each image, DNA was 
labeled using the viable dye Hoechst 33342. Images were 
captured using an IC-100 microscope with a 40X objective 
and a resolution of 0.1613 µm/pixel. 

B. Image Processing 
Time-series images were processed as follows. 

Segmentation and tracking of nuclei were performed as in 
[6]. Background was removed by subtracting the modal 
pixel value of all pixels below the mean pixel value for the 
image.  Images were divided by the 95th percentile of pixel 
intensities from inside nuclear regions, in order to normalize 
nuclei across images. As fewer than 5% of the nuclei and 
thus nuclear pixels at any given time had condensed their 
DNA for mitosis, the 95th percentile should be near the 
maximum intensity of interphase nuclei. Further 
computation only included images of nuclei if the rest of 
each nucleus' cell cycle was also available (mother cell's 
cytokinesis to next cytokinesis). 

Static images were filtered for meaningful signal as 
follows.  Background was removed from both the nuclear 
and protein channels by the same method as above. An 
image was removed if its maximum intensity (after 
background subtraction) was less than 30 in both the nuclear 
and protein channels (manually selected). Clones for which 

no images passed this threshold were ignored. 
Static images were segmented into individual cell regions 

as follows. First, the unprocessed nuclear channels were 
normalized to [0, 1]. A seeded watershed algorithm was used 
to segment the image into separate nuclei. Regional maxima 
of the h-maxima transform, which suppresses maxima 
smaller than some threshold, were used as seeds (using a 
manually selected threshold of seven times the first quartile 
of the Gaussian-filtered channel). The watershed surface was 
the difference of Gaussian-filtered versions of the channel 
(with standard deviations of the minimum nuclear diameter 
and half the minimum, set to 5 µm; the former was also 
morphologically dilated by a disk half the minimum 
diameter to adjust the edges). A background seed consisting 
of the border pixels of the image as well as any seeds 
touching the border was used to ensure compact 
segmentation of the nuclei. Seeds were then imposed as 
minima in the watershed surface by morphological 
reconstruction. Matlab's Image Processing Toolbox was 
used for most of these operations. 

Cellular regions were similarly decided by seeded 
watershed. Seeds were the nuclei found as above (including 
the same background seed to prevent inclusion of protein 
from border cells into the regions of cells of interest). The 
watershed surface was a Gaussian-filtered version of the 
unprocessed protein channel (standard deviation of a tenth of 
the maximum nuclear diameter, 25 µm), also with minima 
imposed by the seeds. 

C. Feature Extraction 
Subcellular Location Features: We have previously 

described several sets of features for describing protein 
patterns in fluorescence micrographs and demonstrated that 
these provide high accuracy for various purposes [1]. We 
therefore began with the SLF7 set [2], which consists of 84 
features including edge, morphological, Haralick texture, 
and DNA correlation features.  To this we added two 
additional feature sets.  The first was a set of 30 wavelet 
features consisting of the root sum of squares of the detail 
channels for a 10-level Daubechie-4 wavelet decomposition. 
The second (to further enhance characterization of textures 
at different scales), was a set of 13 Haralick texture features 
for the protein images spatially downsampled by factors of 
2, 4 and 8 (giving 39 features). Thus, protein patterns were 
described by a total of 153 features. 

Nuclear features: After binarizing the DNA image to 
obtain nuclear shapes, we extracted features to represent 
nuclear appearance. Features include total, minimum, mean, 
standard deviation of, and maximum intensity, area, 
perimeter, long, short, and ratio of medial axes, and Haralick 
texture features. Haralick features were computed on the 
original nuclei and three lower resolutions obtained by 
downsampling by factors of two. Haralick features were 
averaged across horizontal, vertical, and diagonal directions 
after quantizing the images to eight gray levels. This resulted 
in a total of 62 features per nucleus. 
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The intermediate goal is to obtain a scalar field 
parameterization of this 62-dimensional feature space so that 
we could study the relationship between cell-cycle stage and 
its natural parametric progression. As will become clear 
below, such a parameterization permits the exploration of a 
possible association between each protein-pattern variation 
and cell-cycle stage. Isomap manifold embedding is 
performed for dimension reduction from the feature space 
(62-D) to a scalar field (γ1); this approximately preserves the 
geometry of the feature space and allows γ1 to act as a 
surrogate for cell cycle phase. A traversal along this scalar 
field correlates with a corresponding variation in intensity or 
nuclear area by construction. 

D. Manifold Embedding 
 The manifold embedding problem is defined as follows: 

Given data in a high dimensional space (possibly generated 
from a low dimensional manifold), attempt to recover the 
underlying low-dimensional structure of data embedded in 
the high-dimensional space. Isomap [10] is a technique that 
is used to model the intrinsic geometry of a high-
dimensional space using only distances between all pairs of 
data points. It has three main steps. 

First, a nearest-neighbor graph is constructed (we chose to 
use local determination of dimensionality and tangent space 
for this construction [11]). Each edge is assigned the weight 
of the Euclidean distance between its two points. Second, a 
pairwise geodesic distance matrix is formed from the weight 
of the shortest path between each pair of vertices. Third, 
multidimensional scaling applied on the geodesic distance 
matrix finds the final embedding at a specified 
dimensionality. Isomap's outputs, the embedding coordinates 
for the input data points, are returned in order of greatest 
variance explained, and progressively lower dimensional 
manifolds omit more of these later coordinates (that is, the 
target dimensionality of the manifold does not affect the 
values of the embedding coordinates). 

Manifold coordinates for data points not used to compute 
the manifold are estimated using a modified version of 
Isomap's coordinate determination method 
(multidimensional scaling [12]. 

For time-series data, the manifold was built using half of 
the training data as input to Isomap, half of which served as 
landmarks (using a version of Isomap that saves memory 
and computation time by only preserving distances of all 
data points to the set of landmarks).  

For static images, the 62 nuclear features were given as 
input to Isomap. The first dimension of the resulting 
embedding coordinates was taken as a one dimensional 
manifold and termed the cell cycle parameter. 

E. Regression 
The relationship between protein features and γ1 was 

modeled using stepwise polynomial regression. Each protein 
feature and its powers from two to eight became candidate 
predictors for γ1 to model possible nonlinear relationships. 
Stepwise regression was used to select a subset of the 

candidate predictors in order to minimize the number of 
predictors not contributing improvements to the model. The 
method of stepwise regression is an iterative heuristic 
procedure to select the best predictors of the dependent 
variable that, for each iteration, adds a feature that improves 
prediction compared with current features, removes one that 
does not decrease prediction by being eliminated, or exits 
when neither happens. The criteria of addition or rejection 
are F-tests below or above specified threshold, respectively. 

Stepwise regression was also used to model and check 
how well the manifold coordinates found on the time-series 
data correlate with actual time. Time was defined as the 
number of frames since an individual cell's cytokinesis from 
its sister cell divided by the total number of frames before 
the cell divided. 

III. RESULTS 

A. Time-Series Evaluation of the Cell Cycle Parameter  
We began by determining whether a cell cycle parameter 

learned from nuclear features could adequately predict the 
actual time of each frame in a time-series image.  Figure 1 
shows the correlation between the nuclear manifold learned 
from time-series data and actual cell cycle time. Cell cycle 
time clearly progresses in a non-random fashion across the 
manifold. Using stepwise polynomial regression to regress 
cell cycle time against the two coordinates, a testing adjusted 
R-square of 0.70 is achieved (raw nuclear features as 
predictors produce an R-square of 0.74), indicating that the 
manifold embedding quite reliably approximates the original 
geometry of the actual hyperspace, including changes 
according to time. 

B. Predicting the Cell Cycle Parameter for Static Protein 
Images 

 In order to predict the cell cycle parameter for images of 
randomly-tagged cell clones, we applied the above methods 
to 16 clones in two combinations: The protein distribution 

 
Fig. 1.  Relationship between manifold learned on nuclear features of the 
time-series data and actual cell cycle time. The horizontal axis is first 
manifold coordinate, and the vertical axis is second. Color indicates 
fractional time since cytokinesis as shown in the color bar. 
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was represented as either the original 153 SLF features or 
those features reduced by Isomap to a 9-dimensional 
manifold. As a test of how well variation in protein pattern 
was correlated with our estimate cell cycle positions, we  
determined how well the protein features could be used as 
regression predictors of the cell cycle parameter. Statistics 
are averages computed by cross-validation. The level of 
correlation was measured by the testing adjusted R-square. 

In Fig. 2, the two tests described above are grouped by 
protein.  The original feature set tended to better predict the 
cell cycle parameter, while lower variance in estimation of 
the testing adjusted R-square was observed after Isomap-
based dimensionality reduction. Images for various cells 
sorted by cell cycle parameter for one of these proteins 
(Trim24) are shown in Fig. 3. 

IV. CONCLUSION 

 We have presented a system for inferring correlation of 
subcellular protein distribution with cell cycle time from 
unsynchronized images of cells using a one dimensional 
manifold computed on simple nuclear image features. The 
cell cycle parameter (γ1) can be tested for ability to be 
predicted on a per-protein basis from protein image features. 
This relationship provides a way to screen proteins for 
dependence of their localization on the cell cycle using only 
static, asynchronous images. Future work will include 
modifying the cell cycle learning method to incorporate 
prior knowledge from time-series data, examination of 
generalizability to other cell lines and nuclear tagging, and 
comparison of results to curated information regarding cell 
cycle variation in protein localization. 
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Fig. 3.  Images of Trim24 ordered by γ1. γ1 progresses from left to right, 
then top to bottom. Trim24 is the second protein from the left in Fig. 2. 
  

Fig. 2.  Cell cycle parameter predictions are grouped by tagged clone 
(horizontal axis, each pair of blue and red bars). Error bars are standard 
deviation. Raw protein features (left bar in pairs) predict cell cycle 
parameter γ1 with a greater testing adjusted R-square (vertical axis) than 
the first 9 dimensions of an Isomap embedding of the same protein 
features (right bar).  However, the Isomap embedding produces reduced-
variance estimates across cross-validation folds. 
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