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Abstract— The morphological studies of neuron structures
are of great interests for biologists. However, manually de-
tecting dendrites structures is very labor intensive, therefore
unfeasible in studies that involve a large number of images.
In this paper, we propose an automated neuron detection
and description method. The proposed method uses ratios of
probability maps from random walk sessions to detect initial
seed-points and minimal cost path integrals with Delaunay
triangulations.

I. INTRODUCTION

Neurons are the basic building blocks of the nervous
system. Each part of a neuron plays a role in the com-
munication of information throughout the body. Therefore,
qualitative morphological studies of neurons are of great
interest. However, there are numerous challenges due to
their structural complexities and sometimes poor image
qualities. To this end, various methods were proposed in the
literature such as ones based on direct exploratory tracing
[1], [2] which stems from [3], and probabilistic segmentation
method [4] to name a few. As a prerequisite, [1] and [2]
searches for seed-points that ensure proper start locations
and directions of tracing. In particular, two-step process,
which includes line searches and filtering out points on the
background, is used. A modified version of the algorithm,
presented by [3], is used to begin neurite tracing until some
conditions of stopping criteria are reached.

In this paper, we propose a modified probabilistic seg-
mentation proposed by [4] to obtain reliable seed-points and
applying minimum cost approach [5] in neuron description.
Probability maps of two different models of random walk
sessions, intensity-biased and unbiased, are computed and
used to obtain and separate sets of seed-points on a neuron
cell body and its branches. Then minimum cost approach is
applied along with Delaunay triangulation in an attempt to
describe branches of the neuron.

In section II, a brief introduction to random walk model
used in our method and its application is presented. In
section III, we explain the motivations behind our proposed
method and show the framework of the method in each
subsection. Then we conclude in section IV.
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II. BACKGROUND

We consider a random walk session starting from a given
point on an image. Suppose that a random walk begins
from a position somewhere in the cell body (soma) of a
neuron, obtained by a method described in section III-B. For
each step, we determine the directions that the walker takes
by calculating the normalized surrounding intensities of the
position that the walker is currently in. Since we expect
the walker’s excursions to stay inside the neuron cell body
and its branches, and under the assumption that there are
sharp drops in intensity along the cell membrane, we assign
higher probability of the direction taken by the walker to the
neighboring pixels that has similar intensities. Then after a
sufficient number of steps of excursion, we obtain which
pixels are more likely to have been visited by the walker
whose directions of steps are influenced by local intensities.

In the beginning stage of our study, a simulated model of
such random walk sessions was built. However there were an
ambiguity on how to keep a visit count and unclear correla-
tion between the visit count and the probability distribution
of the random walk. To be specific, we asked a question of
whether a visit count should be incremented each time the
walker visits a certain position during the excursion or after
an excursion is finished. When we took the former idea,
we got visit records that resembled geometric distributions
centered at the starting position of the excursions. And when
the latter was taken, the numbers were too sporadic around
the center that we could not consider the result reliable. This
led us to adopt a finite Markov chain model that computes
probability distributions of a random walk position after a
certain number of steps over the image.

In order to build an iterative Markov chain model, we
first form a transition matrix that is column normalized as
follows. Let I(i, j) be an image with width m and height
n, and let P be the transition matrix with [m ∗ n] rows and
[m∗n] columns. Each column of the matrix corresponds to a
pixel of the image I(i, j) such that (x0 + y0 ∗m)th column
represents a pixel (x0, y0). The elements of the column
is calculated by first normalizing the gradient intensities
of the neighbors of (x0, y0) then assigning the obtained
values to appropriate rows of the (x0 + y0 ∗m)th column.
In normalizing the gradient intensities of the neighbors, we
take the typical Gaussian weighting functions commonly
used in the literature [6]. Let (x0, y0) be the intensity at
current position of the random walk session and (xk, yk)
one of its neighbors . Then the element in the corresponding
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position of the column is

P (xk + yk ∗m,x0 + y0 ∗m) = e−((x0,y0)−(xk,yk))2 . (1)

As we can see, P is a column normalized sparse matrix with
only 8 non-zero elements in each column. With the transition
matrix formed, we need to define two column vectors s and
x(x0,y0) such that all elements of them are zeroes except at
the starting position of the random walk which is 1. We also
define a value c which is a restart probability that determines
the range of area covered by the random walk. Finally, we
can iteratively obtain a probability mask x(x0,y0):

x(x0,y0) := (1− c)Px(x0,y0) + cs, c ∈ [0, 1] . (2)

The authors in [7] show that Eq. (2) converges to a stationary
probability distribution. If c is close to 1, then the probability
mask covers small area around the starting position and if
it is close to zero, it covers a large area on the image.

III. METHOD

In this section, we first discuss the motivation of our
method and compare our results with the ones that were
presented by [4]. We then discuss further how our method
can be applied to neuron description. We end by proposing a
Delaunay Triangulation combined with minimum cost path
algorithm in order to detect neurons.

A. Motivation

From the method that was presented in section II, we get,
for each pixel on an image, a probability of whether a pixel
belongs to the cell that was segmented by the algorithm.
This is very useful when there are more than one cell on
the image since separate random walk sessions which start
from different starting positions give different probability of
the pixel belonging to corresponding cells.

Since our aim is to identify and describe neuron struc-
tures, we develop the method further. In [4], the elements
of the transition matrix P is calculated by the normalized
intensities of the neighbor pixels with Eq. (1). Also, because
we let the random walk excursions to have higher probabil-
ity of taking directions to neighboring pixels with similar
intensity values, we are assured that the centerline positions
of the branches have higher probability values compared to
the ones near the edges.

However, the resulting probability map Fig. 1(b) shows
smooth downward or upward trends of probabilities whence
we can not easily locate where the peaks are. Therefore,
in addition to transition matrix P, we also form another
transition matrix Q. The transition matrix Q represents a
classical random walk that has equal chance to go in any
direction for each step. Then the resulting probability mask
shows how an unbiased random walk behaves from the same
starting position.

(a) (b) (c)

Fig. 1. Neuron segmentation results. (a) Original image. (b) Intensity
based random walk. (c) Probability quotient.

(a) (b) (c)

Fig. 2. 3D plot of neuron segmentation results. (a) Segmentation result
from [4]. (b) Unbiased random walk result. (c) Probability Mask zpq (i, j).

Let xp and xq be the resulting probability masks from
Eq. (2) with transition matrices P and Q respectively. Then
xp (i, j) is the probability that gradient intensity biased
random walk ends up at (i, j) after a certain number of
steps and xq (i, j) is the probability that unbiased random
walk finishes at (i, j) after the same number of steps. Thus,

zpq (i, j) = xp (i, j) /xq (i, j) , (3)

gives probabilistic values for an intensity biased random
walk to be in the position compared to the unbiased one
after a certain number of steps taken. Fig. 1(c) shows the
resulting images from Eq. (3).
Notice how we can obtain more intense pixel values at the
branches on Fig. 1(c). In Fig. 2, 3D plots of probability
masks from intensity biased (a) and unbiased (b) are dis-
played. Also, the third 3D plot (c) shows clearly the peaks
along the branches of the neuron. Hence, we obtain locations
of peaks inside the neuron without applying thresholds in
order to discount the false positive positions outside the
neuron which we must do if we used methods in [2].

B. Soma detection

As mentioned in section II, soma (cell bodies of neurons)
must first be found in order to run the processes shown in
section III-A. As proposed in [2], we use a simple gray-
scale erosion with an assumption that the size of soma is
bigger in pixel than branches. Since the width of the soma is
much larger than the width of dendrites, we can easily find a
window size with which we run a gray-scale erosion. Then
we look for local maxima over the whole image which yields
positions near the center of soma. This method is effective
in detecting the location of soma, and we find that little
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variations in locations of random walk starting positions
inside soma does not alter the accuracy of the results.

C. Seed-points acquisition and classfication

In section III-A, we showed that by using Eq. (3) we
locate the peaks of probabilistic values (referred to as salient
points hereafter) over the neuron. A simple local maxima
algorithm is run to locate positions of the peaks. We may
obtain higher number of salient points as we adjust the size
of the window used in the local maxima algorithm. Fig. 3
shows the locations of the salient points. Fig. 3(a) displays
the salient points found with a window size 5 and (b) with
a window size 3. Notice how the locations of the salient
points are nearly at the centerlines of the branches and that
there are numerous peaks found along the edge of the soma.
The two step process of first locating soma position and then
running random walk sessions detect salient points that are
inside neuron. In fact, it dramatically reduces false positives
such that we do not need to apply a threshold in order to
get rid of salient points that lie outside the neuron.

Now we must distinguish the salient points on the soma
from the ones on branches. To this end, we collect all prob-
ability values at salient point locations from the probability
mask xp (Fig. 2(a)). Since we are assured that the intensities
on soma are higher than intensities on branches, which
means that probabilities of the intensity biased random
walk on soma are higher, we apply K-means algorithm on
collected probability values to separate salient points that
are on soma from the ones on branches. Fig. 4 shows two
resulting images after running the procedures in previous
sections and classifying obtained peak locations with K-
means algorithm into two groups. A salient point is marked
with a circle if a point is on the soma or marked with a ”+”
otherwise.

(a) (b)

Fig. 3. Locations of salient points obtained from finding local maxima
on probability mask zpq (i, j). (a) window size 5. (b) window size 3.

(a) (b)

Fig. 4. Classification of salient points into soma points and branch points.

D. Delaunay triangulation and minimum cost path

From section III-B and III-C, we obtain the locations of
the center of the soma and salient points that are on the
branches of the neuron. It remains to find minimal paths
between salient points and the center of the soma with a
condition that a salient point is connected to either the center
point or the nearest salient point. A fast way to construct all
possible paths that satisfy the condition is to run a Delaunay
triangulation with all the salient points and the center point.
Fig. 5(a) displays the image after the triangulation is done.
Since the triangulation includes all possible paths of salient
points to the center point, we must eliminate edges that are
not representative of lines on the image. In doing so, we
adopt a cost function that was introduced in [5]. From the
second order directional derivatives on the image at a certain
observation scale σ, we calculate the Hessian matrix

H =
(
Ixx Ixy
Iyx Iyy

)
and choose λmax such that λmax = max (|λ1| , |λ2|) where
λi is an eigenvalue of the Hessian matrix. Define a quanti-
tative measure of line contrast Rσ (x, y) by:

Rσ (x, y) = σ2 |λmax|
1
bσ
, (4)

where the line brightness b is given by

bσ =

{
Iσ(x,y) if λmax ≤ 0

W − Iσ(x,y) otherwise (5)

where W = max (I (x, y)). We take W = max (I (x, y))
since the lines formed by the branches of the neuron are
bright lines against a low intensity background. From this
quantitative figure Rσ , we determine to what degree a point
on an image belongs to a line.

Assume that S1 and S2 are two end points of an edge
from the triangulation. Using Brensenham’s algorithm, we
obtain all points that belong to a path between S1 and S2.
Let rσ (x, y) be a cost function given by:

rσ (x, y) =
ε

ε+Rσ (x, y)
, (6)
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(a) (b)

Fig. 5. Delaunay triangulations with obtained salient points. (a) After
Delaunay triangulations. (b) After edge elimination by minimum cost path
algorithm.

and its path integral

c (S1, S2) =
∫ S2

S1

rσ (x (p) , y (p)) dp, (7)

where (x (p) , y (p)) is the position of the point on the path
and fixed ε that represents a trade-off between following
the maximum line contrast and the shortest route. The path
integral (7) yields integrated cost over the path that is given
by the edges of the triangulation at a given scale σ. Then
we calculate the cost path integrals for all edges from the
triangulation and eliminate the edges with path integral
values higher than a number that is given by the user. The
preliminary result of the minimal cost path analysis is shown
in Fig. 5(b) with σ = 2 and ε = 0.001. We can see that the
most of the edges that do not represent lines were eliminated
and three major dendrites branching out of the soma are
kept.

IV. CONCLUSION
In this paper, we presented a method that uses probability

distributions from random walk sessions to detect reliable
seed-points and minimum cost path analysis to obtained
seed-points for extracting, constructing, and describing ma-
jor branches that neurons have. The main contributions of
this paper are first the method’s utilization of two different
types of random walk sessions in order to extract salient
points as opposed to just one in [4] for segmentation and
second its ability to extract more reliable salient points
thereby eliminating the need to threshold the falsely detected
salient points as done in [2]. The preliminary results are
encouraging and we plan to extent this work by refining the
minimum cost path analysis to build better initial sketches
of the neuron structure and finding the actual minimum
paths between the connected salient points from the initial
sketches.
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