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Abstract— Estimation of nodule location and size is an
important pre-processing step in some nodule segmentation
algorithms to determine the size and location of the region
of interest. Ideally, such estimation methods will consistently
find the same nodule location irregardless of where the the
seed point (provided either manually or by a nodule detection
algorithm) is placed relative to the “true” center of the nodule,
and the size should be a reasonable estimate of the true
nodule size. We developed a method that estimates nodule
location and size using multi-scale Laplacian of Gaussian (LoG)
filtering. Nodule candidates near a given seed point are found
by searching for blob-like regions with high filter response.
The candidates are then pruned according to filter response
and location, and the remaining candidates are sorted by size
and the largest candidate selected. This method was compared
to a previously published template-based method. The methods
were evaluated on the basis of stability of the estimated nodule
location to changes in the initial seed point and how well the size
estimates agreed with volumes determined by a semi-automated
nodule segmentation method. The LoG method exhibited better
stability to changes in the seed point, with 93% of nodules
having the same estimated location even when the seed point
was altered, compared to only 52% of nodules for the template-
based method. Both methods also showed good agreement with
sizes determined by a nodule segmentation method, with an
average relative size difference of 5% and -5% for the LoG
and template-based methods respectively.

Index Terms— pulmonary nodule, size estimation, Laplacian
of Gaussian

I. INTRODUCTION

Often, small pulmonary nodules detected on high-

resolution computed tomography scans are too small to be

diagnosed through conventional means such as by biopsy, so

the growth rate of a nodule is increasingly becoming an im-

portant indicator of malignancy. In previous studies, nodule

growth rate was found to be a good discriminating feature

for distinguishing benign from malignant nodules [1]. Recent

studies using automated volumetric measurement methods

have also found growth rate to be a useful feature [2],

though some studies have observed malignant nodules with

very slow growth rates [3], [4]. Studies have suggested that

automated methods of nodule volume measurement tend to

have less variability than manual methods [5] and may be

more useful for the assessment of treatment response [6].
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Most automated methods require the specification of a seed

point within the nodule, while some methods also require

the manual specification of the region of interest containing

the nodule [7].

One of the goals of a measurement method is to have high

reproducibility. This can be achieved in automated methods

by consistently using the same set of parameters. In the

case of methods that require the manual specification of a

seed point or the region of interest, using an algorithm to

quickly and consistently estimate the same nodule location

and size irregardless of where the initial seed point is placed

within the nodule would likely improve the consistency of

the method. Estimating the size of the nodule allows smaller

image regions to be analyzed, potentially reducing processing

time. Locating the nodule involves finding the approximate

center of the nodule, given a seed point anywhere inside

the nodule. This is important to allow the algorithm to be

robust to the position of a seed point and may possibly reduce

variability caused by an observer.

Gaussian fitting has been used to locate and size pul-

monary nodules [8], and other studies have shown that the

characteristic scale of a Laplacian of Gaussian (LoG) agreed

well with radiologists’ estimates of nodule size [9], [10].

In this work, we present a fully automated method for

estimating the size and location of a nodule using a multi-

scale LoG filtering approach. We compared this method to a

previously published method using template functions [11]

on a dataset of 29 nodules imaged prior to biopsy. Both

methods were evaluated for the stability of the estimated

nodule location to changes in the seed point and for how

well the nodule’s size is approximated.

II. METHOD AND MATERIALS

We developed a multi-scale Laplacian of Gaussian (LoG)

filtering method for the task of nodule location and size

estimation. Given a seed point to identify the nodule in

the CT scan, a volume of interest was extracted from the

image around the nodule; for this study, it was fixed in

size to be 60 mm3. The volume of interest was resampled

into isotropic space with a voxel size of 0.5x0.5x0.5 mm in

order to reduce errors due to quantization, as suggested by

Kostis et al [12]. Finally, LoG filtering was performed on the

resampled volume of interest. The method was compared to

a template-based method that was used as an initial step in a

nodule segmentation method published by Reeves et al. [11]

on the same dataset. The same set of pre-processing methods

were used to prepare images for both methods.
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(a) (b)

Fig. 1. Single slice of a volume of interest showing a) nodule candidates
generated by the LoG filter and b) the selected candidate after pruning.

A. Scale-normalized LoG filtering method

We propose a multi-scale method using a Laplacian of

Gaussian (LoG) filter for estimation of nodule size and

location. This approach previously produced good results for

nodule candidate generation in pulmonary nodule detection

task [10]. For nodule location and size estimation, the

algorithm generates nodule candidates in a small region of

interest around the nodule, and the best candidate is selected

through a rule-based method.

Nodule candidate space is identified by local min-

ima in four-dimensional multi-scale image feature space

L(x, y, z, σ2), created by filtering the original image per-

formed as the series of convolutions with scale-normalized

LoG kernels σ2
∇

2G(x, y, z, σ2) of different size:

L(x, y, z, σ2) = I(x, y, z) ∗ σ2
∇

2G(x, y, z, σ2),

where G(x, y, z, σ2) is a three-dimensional Gaussian with

variance σ2. These convolutions are computed efficiently by

using the fact that LoG can be approximated by a difference

of Gaussians and can be performed by multiplication in the

Fourier domain.

Each local minimum in this space identifies the spatial

location and the best matching kernel size for a candidate

nodule in that region of space:

< x, y, z, σ2 >i= argminlocal
{

L(x, y, z, σ2)
}

.

The size parameter of the kernel is directly related to the

diameter of a candidate nodule as given by this expression

d2 = 12σ2. For the task of identifying possible candidates,

150 normalized LoG kernels of incrementally increasing size

corresponding to the diameter range from 3.0 to 30.0 mm

were used.

The output of the LoG filtering stage is a list of candidate

locations, sizes, and filter responses, which is pruned ac-

cording to several rules. A threshold was applied to remove

candidates with a low values of response L(x, y, z, σ2).
Candidates with more than half of their volume outside the

region of interest were removed, as were candidates that were

located far from the manually specified seed point. Finally,

the list of remaining candidates was sorted and the largest

candidate was chosen as the best estimate for the nodule size

and location. A slice of a nodule with all the candidates in the

slice is shown in Figure 1a, and the final selected candidate

in Figure 1b.

B. Template-based method

The template-based method was used as a pre-processing

step in the nodule segmentation algorithm developed by

Reeves et al [11] and will be summarized here. The method

was developed based on a two-level model where the nodule

is modeled as a high-intensity spherical object surrounded by

low-intensity lung parenchyma. Using this information, two

template functions for the location, LP,r(x, y, z), and size,

SP,r(x, y, z) are defined, where P indicates the nodule center

point and r is the estimated radius of the nodule. Correlation

between the template function and the image is used as the

response of the template. A 3-D Gaussian was used as the

sizing template because it fits the model of the nodule, while

the negative of the Laplacian of Gaussian was used for the

locating template because it has a negative weight further

from the center, which is useful for locating juxtapleural

nodules. The algorithm uses an iterative greedy search in

four-dimensional space to find the best values of P and r.

This method can be used by either specifying only a seed

point, or by specifying two points on opposite sides of the

nodule. In the first case, the method uses the seed point as the

initial location estimate and assumes a small initial radius.

For the second case, the initial location is estimated as the

center of the line segment connecting the two points and the

initial radius is estimated as half the distance between the

two points. The method using only a seed point works well

for spherically shaped nodules in uncomplicated situations,

but with complex attachments, the method may estimate a

nodule size and location over part of the nodule due to

finding a local extremum. This can be addressed by using the

two-point method, but this requires additional input from the

radiologist and increases the subjectivity of the estimate. For

this study, the initial location and an estimate of the radius

were provided to the method.

C. Experiments

A method for nodule size and location estimation should

be robust to changes in the position of the initial seed

point. This was evaluated by comparing the estimated nodule

location using 1) a seed point located at the approximate

center of the nodule and 2) a seed point near the nodule

periphery. The peripheral seed point was placed to represent

seed point variability that might be expected to occur in

clinical use; the center seed point was shifted by 50% of

the radius in-plane and by 1 slice to obtain the peripheral

seed point. The radius of the nodule was computed from the

volume estimated by a previously published algorithm [11]

for 22 nodules; the remaining seven nodules had the radius

estimated manually. For example, a nodule with a diameter

of 10 mm would have a peripheral seed point shifted 2.5 mm

along the x and y axes and 1 slice from the center point. The

Euclidean distance between the estimated location of each

nodule using the center seed point and peripheral seed points
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TABLE I

STABILITY OF ESTIMATED NODULE LOCATIONS. THE REPORTED

DISTANCE IS BETWEEN ESTIMATED NODULE LOCATIONS USING THE

CENTRAL AND PERIPHERAL SEED POINTS.

Mean dist. (mm) SD (mm) % nodules no change

LoG 1.27 4.56 93% (27/29)

Template 3.23 5.14 52% (15/29)

TABLE II

RELATIVE DIFFERENCE IN DIAMETER ESTIMATES COMPARED TO

VOLUMETRIC SEGMENTATION-BASED METHOD.

Method Mean (%) SD (%)

LoG 4.6 6.0

Template -5.3 8.8

was computed, and in the ideal case, the distance between

the estimated locations will be zero.

In addition to estimating the nodule location, these meth-

ods also estimate the nodule size in terms of diameter.

For nodules which had automated volumetric measurements

available, the diameters estimated by both methods were

compared to the diameter equivalent of the volumetric

measurements. The relative difference was computed and

the mean and standard deviation were computed for each

method.

D. Data

A dataset of 29 nodules with scans obtained during biopsy

procedures was used to evaluate the methods. The nodules

ranged in size from approximately 7 mm to 30 mm. The

nodules were imaged on scans with a whole-lung field of

view with slice thicknesses of 1.25 mm (20), 2.5 mm (7), or

5.0 mm (2). Scans were acquired using GE LightSpeed QX/i,

LightSpeed Pro 16, or LightSpeed Ultra scanners using 120

kVp and a current in the range of 40 - 250 mA. Of these

29 nodules, 22 had size measurements from an automated

segmentation method available.

III. RESULTS

The stability results of both methods are summarized in

Table I as the average distance between the estimated nodule

location using the center and peripheral seed points. The

number of nodules with no change in the estimated nodule

location is also given. The mean and standard deviation of

the relative differences in size compared to a volumetric

segmentation-based method are given in Table II for both

methods for the 22 nodules with available segmentations.

The nodule sizes were estimated based on the central

seed point. Differences were computed from the volumetric

method, so that a negative mean relative difference indicates

a method that tends to overestimate, while a positive mean

indicates a method that underestimates.

IV. DISCUSSION

The stability of both methods was relatively good, with

the LoG method exhibiting better stability than the template-

based method; the LoG method was only provided with the

(a) (b)

Fig. 2. Center slice of a nodule with the estimated nodule location and size
indicated by a circle for the a) LoG method and b) template-based method.
Both results were obtained for a peripheral seed point.

Fig. 3. Center slice of a juxtapleural nodules successfully located and sized
by the LoG method

seed point, while the template-based method required the

seed point and an estimate of the nodule size. The LoG

method had an average distance between nodule locations

that was less than half the distance of the template-based

method. Additionally, the LoG method found the same seed

point in 93% (27/29) of nodules despite altering the seed

point, while the template-based method only found the same

seed point in 52% (15/29) of nodules. The LoG method

had large errors in the two cases where it failed to find the

same nodule location, whereas the template-based method

had a wide range of errors. Depending on the application,

catastrophic errors may be preferable because they can be

detected and reported to the user.

The LoG method worked in many difficult cases. In

Figure 2, the LoG method correctly identified the location

and size of the nodule with many spiculations despite using

a peripheral seed point, whereas the template-based method

found an incorrect nodule location. The template-method

selected the wrong location because of its use of a LoG

template for locating the nodule; moving the location in any

direction would have lowered the template response. The

LoG method was also successful for juxtapleural nodules,

as shown in Figure 3.

The LoG method was designed for spherical nodules with

attachments; nodules that significantly deviated from this

model resulted large variations of the seed point location.

An example of a nodule where the LoG method incorrectly

estimated the nodule size and location, with a large difference

in the estimated location when the seed point was altered, is

shown in Figure 4; the estimated nodule location from the
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(a) (b) (c)

Fig. 4. a) Single slice of a flat elongated nodule showing b) candidates
generated by the LoG method and c) the final selected nodule locations.
Different candidates are selected depending on the location of the seed
point; the upper circle is the estimate from the central seed point, while the
lower circle is the from the peripheral seed point. Images are windowed at
different levels to improve contrast.

center seed point is in the upper left, while the estimated

location using the peripheral seed point is the lower right. In

this case, due to the variations in density within the nodule,

no candidates for the entire nodule were generated, and as

the peripheral seed point was closer to a different candidate,

it was chosen over the candidate from the center seed point.

The size estimates provided by the methods can be used

as an initial condition by further processing stages in nodule

segmentation algorithms to reduce the time required to reach

convergence, or to reduce the search space by providing an

estimate of the size of the region of interest of the nodule.

The estimates provided by the methods were within approxi-

mately 5% of the size determined by the segmentation-based

method as shown in Table II. Since the goal of these methods

is only to get an estimate of the nodule size, the performance

of both algorithms is acceptable as a pre-processing step.

Even though the LoG method performed well, there are

several areas for improvement. The method is limited in its

ability to accurately located and size elongated nodules; this

can be addressed by using non-spherical kernels, but at the

expense of additional computational complexity. Note that

this limitation is not unique to the LoG method; the template-

based method has a similar limitation. Further, the speed of

the method can be improved by first performing a coarse

estimate of size followed by a finer size estimate; in the

current implementation, the method takes approximately 1

minute per nodule on a Xeon 3.0 ghz processor.

V. CONCLUSION

Estimating the location and size of a pulmonary nodule

is useful as a pre-processing step for nodule segmentation

algorithms; these parameters can be used to define a small

volume of interest from the entire CT scan, reducing com-

putation time and memory usage in later processing steps.

In this work, we applied a Laplacian of Gaussian (LoG)

filtering method to the task of estimating nodule size and

location. To evaluate this method, the initial seed point

provided to the algorithm was altered and the estimated

nodule locations were compared. This new method was

compared to a previously published template-based method

on the same set of nodules; the LoG filtering method showed

improved stability to changes in the seed point compared

to the template-based method, despite only requiring a seed

point, whereas the template-based method required both a

seed point and an estimate of the nodule radius. Although the

LoG method works well for spherical nodules both isolated

and attached to vascular structures or the pleural surface,

nodules that are extremely lobulated or elongated still pose

a challenge. Future work will improve upon these issues

and incorporate this algorithm into a nodule segmentation

algorithm.
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